双层加载电路板屏蔽腔屏蔽效能研究(二)

最新更新时间:2014-08-26来源: 互联网关键字:双层加载  电路板  屏蔽腔 手机看文章 扫描二维码
随时随地手机看文章

  2.2 介质板与第二层孔缝之间的距离对屏蔽效能的影响

  介质板尺寸不变为300 mm×120 mm×1 mm.内层孔到加载PCB 板的距离q 变化。在这里q 分别取50 mm,100 mm 和290 mm,最后和没有PCB 板的情况做对比。

  

 

  由图5 可知,在给定频率范围内,介质板离第二层孔缝越远,屏蔽效能越低。当介质板离第二层孔缝50 mm的时候,大部分耦合场发生反射,耦合出腔体,因此第二层腔体中心场强是最小的,屏蔽效能是最大的,随着距离的增大,腔体中心场强也逐渐增大,当增加到290 mm的时候,腔体中心场强达到最大值,与无介质板时的场强接近,屏蔽效能也与无介质板时接近。

  2.3 介质板数量对屏蔽效能的影响

  介质板大小均为300 mm×120 mm×1 mm,当只有一块介质板的时候,放置在距第二层孔缝100 mm 的地方,即图1 中q=100 mm 的地方;当有两块介质板的时候,放置在距离第二层孔缝50 mm 和100 mm 的地方,即图1 中q=50 mm 和q=100 mm 的地方,当有三块介质板的时候,放置在距离第二层孔缝50 mm,100 mm 和150 mm 的地方,即图1 中q=50 mm,q=100 mm 和q=150 mm的地方。仿真结果如图6所示。

  

 

  由图6 可以看出,随着介质板数量的增加,腔体中心位置的屏蔽效能有所增加。

  2.4 介质板不同放置方式对屏蔽效能的影响

  介质板大小不变,以下面三种不同的方式放置:与第二层孔缝平行,放置在距离地二层孔缝100 mm的位置;与侧面平行,放置在垂直于孔缝长边中央的位置;与地面平行,放置在垂直于孔缝短边中央的位置。三种放置方式如图7所示。

  

 

  三种情况仿真结果如图8所示。

  

 

  由图8可知,介质板平行与地面放置时屏蔽效能最差,其他两种放置方式对屏蔽效能影响不大。

  3 加载集成运算放大电路板对屏蔽效能的影响

  实际的印制电路板和等效的宏观介质板还是存在一定的差异,在这里,将宏观介质板替换为集成运算放大电路板,如图9所示。

  

  对比介质板和电路板在屏蔽腔中对屏蔽效能的影响,设置介质板大小与电路板相同,均为75.59 mm×25.69 mm×0.711 2 mm,均将模型放置在屏蔽腔后腔中心距z 轴原点-99.288 8 mm 的位置,此处介质板为前面提到的电导率为σ = 0.22 S - m-1 介电常数为εr = 2.65 的宏观介质板,印制电路板采用图9所示的加载集成运算放大电路的电路板。运用CST,将电路板的PCB模型导入到CST的微波工作室中,经过仿真后,其结果如图10所示。

  

 

  由图10 可知,在大小、厚度、放置位置相同的情况下,宏观介质板和印制电路板得到的屏蔽效能相差不大,即用宏观介质板等效替代印制电路板误差较小。

  加载印制电路板后腔体屏蔽效能主要表现在电路板表面电场强度的变化和表面电流的不同,通过CST仿真,得到下述结果。

  3.1 电路板表面电场

  

 

  从由图11 和图12 可知,无屏蔽时最大场强为11.070 7 V·m-1 ,有屏蔽时最大场强为0.164 V·m-1 ,可见屏蔽腔对电路板起到了良好的屏蔽效果。并且相隔较近的导线之间容易引起高场强,如果没有屏蔽,将会引起电路板的正常工作,严重时引起损坏。

  3.2 电路板表面电流

  

 

  在图13 中,无屏蔽时电路板表面电流最大值为0.014 93 A·m-1 ,图14中,有屏蔽时电路板表面电流最大值为2.091 8e - 005 A·m-1 ,明显比无屏蔽时减小许多,说明屏蔽腔对电路板起到了良好的屏蔽效果。

  4 结语

  本文用传输线等效模型推出双层加载电路板矩形腔体屏蔽效能的计算公式,通过仿真验证了公式的正确性,并得出结论:在给定频率范围内,介质板越大,腔体屏蔽效能越高;介质板离第二层孔缝越近,屏蔽效能越高;介质板数量越多,屏蔽效能越高;介质板平行与地面放置时屏蔽效能最差,其他两种放置方式对屏蔽效能影响差别不大。通过以上结论,在设计机壳时,可以通过对内部电路板的合理布局提高系统的屏蔽效能,同时,腔体内电路的响应频率应当避开腔体的谐振频率。在本文中,为了更加贴合实际应用,将等效介质板替换为加载集成运算放大电路的印制电路板模型,通过CST仿真,验证了宏观介质板等效代替印制电路板的有效性和相似性,并且验证了屏蔽腔体对内部电路板良好的屏蔽效果以及屏蔽腔体对电路板功能的影响。

关键字:双层加载  电路板  屏蔽腔 编辑:探路者 引用地址:双层加载电路板屏蔽腔屏蔽效能研究(二)

上一篇:双层加载电路板屏蔽腔屏蔽效能研究(一)
下一篇:一种新型的改善多路输出电源交叉调整率的解决方案

推荐阅读最新更新时间:2023-10-12 22:44

工程师用遗传算法和电路板定位癌症
近日(1月12日),研究员闵应骅在博客发表文章讲述英格兰达拉谟大学的一些工程师在解决经典问题时,采用纳米材料薄膜。譬如应用此材料结合遗传算法和电路板可实现在乳房X光照片上定位癌症。 文称,他们通过电极阵列将电压脉冲送到侵入液体晶体的碳纳米管的稀释混合体中,经过一段时间以后,碳纳米管,导体和半导体的混合体发生变化,被重新安排成一个电极的复杂网络。用遗传算法和一个用户电路板,该网络能够执行最优化问题的关键部分。这个纳米混合体还能解其他比较简单一点的问题。 这些问题解决得好吗?在某些情况下效果好,而在其他情况下要坏一些。电路板打样品牌捷多邦报道。
[医疗电子]
工程师用遗传算法和<font color='red'>电路板</font>定位癌症
IPC-9252A无载印刷电路板电子测试要求现在推出中文版
美国伊利诺斯州班诺克本 2012 年 11 月 12 日讯 — IPC — 电子工业联接协会® 宣布发行中文版本的 IPC-9252A 无载印刷电路板电子检测要求。由 IPC 电子连续性测试工作组制定,修订版 A 定义了适当测试的级别并在无载印刷电路板和内层上进行电子测试所需的测试分析仪、测试参数、测试数据及装置的选择方面提供帮助。 修订版 A 扩大了隔离测试的邻接概念,并增加了对电阻性间接连续性和隔离测试的新要求。还讨论了用于筛选条件的其他参数测试。本标准还讨论了有关飞针测试的常见误解。 标准的主要部分是针对邻接概念定义的,包括邻接距离、水平邻接距离和垂直层邻接。这些定义非常重要,因为每一台机器都各不相同。为了使标准更
[测试测量]
利用万用表测量电路板参数的方法及使用注意事项
万用表又称为复用表、多用表、三用表、繁用表等,是电力电子等部门不可缺少的测量仪表,一般以测量电压、电流和电阻为主要目的。万用表是一种多功能、多量程的测量仪表,一般万用表可测量直流电流、直流电压、交流电流、交流电压、电阻和音频电平等,有的还可以测交流电流、电容量、电感量及半导体的一些参数等。万用表按显示方式分为指针万用表和数字万用表。 1、万用表二极管档或电阻档都可以测电路板故障,若用二极管档时用表笔分别去测待测点,若线路板是短路的,会响的,若有的万用表上还有指示灯亮的,或电阻档的话,是短路则万用表的显示为零。 2.直流电压的量测:首先将黑表笔插进“com”孔,红表笔插进“V Ω ”。数值可以直接从显示屏上读取,若显示为“1
[测试测量]
利用万用表测量<font color='red'>电路板</font>参数的方法及使用注意事项
解决高速网络设备中电线太多的问题
机架式(ToR)交换机、路由器、服务器和存储器等各种当今高速通信设备是数据中心最前沿、功能最强大和最精心设计的主角。这些设备包含的电路令人印象深刻,多个端口实现25Gbps以上的速度,还有复杂的开关专用集成电路(ASIC)和复杂的信号调理设备。 容易忽视的是,对于每个高速端口(小型可插拔接口(SFP)、四通道小型可插拔接口(QSFP)、串行连接小型计算机系统接口(SAS)等),有四至九个与该端口相关的低速信号需要管理。这意味着,对于高端口计数系统(例如48端口ToR开关),可能有超过400个低速信号。这会用到很多电线! 为了管理所有这些信号,典型的设计实施涉及高引脚数现场可编程门阵列(FPGA)、I2C多路复用器、移位寄存
[网络通信]
解决高速网络设备中电线太多的问题
RS Components扩展Electronics Workbench网页内容
中国上海,2016年12月7日 - 服务于全球工程师的分销商 Electrocomponents plc 集团旗下的贸易品牌RS Components (RS) (LSE:ECM) 更新了其Electronics Workbench网页,以提供面向电子设计工程师的最新创新产品和支持的信息。 该页面的内容包括相关的DesignSpark文章和讨论、来自行业领导者的最佳实践建议、以及最新产品、设备和创新,已经成为了设计电路板、在PCB制造业中工作、或者开展电子测试和测量的工程师的‘必去’门户。 网页介绍的新产品之中,特别值得一提是TektronixTBS2000。它是一台全集成的教学示波器,具备多个特点,非常适合电子教育用途。
[半导体设计/制造]
RS Components扩展Electronics Workbench网页内容
如何进行应用电路板的多轨电源设计
简介:工程师在不断发展的时代所面临的挑战 紧迫的时间表有时会让工程师忽略除了VIN、VOUT和负载要求等以外的其他关键细节,将PCB应用的电源设计放在事后再添加。遗憾的是,后续生产PCB时,之前忽略的这些细节会成为难以诊断的问题。例如,在经过漫长的调试过程后,设计人员发现电路会随机出现故障,比如,因为开关噪声,导致随机故障的来源则很难追查。 此专题分两部分讨论,本文是第一部分,主要介绍在设计多轨电源时可能会忽略的一些问题。第一部分着重介绍策略和拓扑,第二部分重点讨论功率预算和电路板布局的细节,以及一些设计技巧。许多应用电路板都使用电源来偏置多个逻辑电平,本系列文章将探讨多电源电路板解决方案。旨在实现首次即正确的设计拓扑或
[电源管理]
如何进行应用<font color='red'>电路板</font>的多轨电源设计
印制电路板EMC设计技巧总结
  目前电子器材用于各类电子设备和系统仍然以印制电路板为主要装配方式。实践证明,即使电路原理图设计正确,印制电路板设计不当,也会对电子设备的可靠性产生不利影响。例如,如果印制板两条细平行线靠得很近,则会形成信号波形的延迟,在传输线的终端形成反射噪声。因此,在设计印制电路板的时候,注意采用正确的方法。   A、地线设计   在电子设备中,接地是控制干扰的重要方法。如能将接地和屏蔽正确结合起来使用,可解决大部分干扰问题。电子设备中地线结构大致有系统地、机壳地(屏蔽地)、数字地(逻辑地)和模拟地等。在地线设计中应注意以下几点:   1.正确选择单点接地与多点接地   在低频电路中,信号的工作频率小于1MHz,它的布线和器件间的电感影
[电源管理]
开关型调节器的电路板布局技术
本文介绍了开关型调节器的电路板布局的基本原则。尽管本文集中分析的是升压型开关型调节器,但它所包含的原理同样适合其它类型的开关调节器。本文讨论了接地方法、元器件布局、降低噪声辐射以及减少寄生电容和电感的重要性。 当考虑怎样才能最好地为开关电源设计电路板时,最好首先考虑一下它的最终目的,即提供一个特定数值的稳定电压。有经验的设计人员会谨慎考虑电路的接地方法,从而获得稳定的电压。他们知道很难获得完美的接地方案 — 因为这不仅仅是接地问题,任何接地工作都会直接影响到电路的性能,设计人员还要特别注意各种稳压元件的位置。 接地 让没有经验的工程师简单地画三条短线表示接地可能是一个误区,这个符号会给初学者一种错觉,简单认为接地是一
[模拟电子]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
更多每日新闻
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved