高效USB端口电池充电设计方案

最新更新时间:2014-08-30来源: 互联网关键字:USB端口  电池充电 手机看文章 扫描二维码
随时随地手机看文章

  USB为多种便携设备提供了通过单个“通用”电源充电的手段,从而更加方便。但是这方面也存在着许多挑战。以前的USB充电能力相当有限;标准USB主机端口的电流确实只适合为计算机外设(比如键盘,鼠标和读卡器)进行供电。USB2.0支持的供电电流可达500mA,可以为电池缓慢充电。与此同时,大家期待的是如何大幅缩短充电时间。

  在这个环境下,2011年初推出的1.2版USB充电规范,提出了新的供电模式,增加了为设备电池充电的灵活性。本文将介绍可支持最大1.8A电流的专用充电接口(DCP)的概念。这几乎是标准下行端口(SDP)USB2.0连接承载电流的4倍,从而能够极大加快充电时间。

  关于DCP

  USB接口有4条屏蔽线。它们是:用于给连接外设供电的VBUS,负数据端D-,正数据端D+以及接地GND(图1)。在DCP中,D+和D-通过一个 200Ω电阻短接在一起,防止数据传输。它向连接外设指示,端口完全集中在充电功能,不能提供主控功能。通过USB端口进行连接的任何便携设备能够区分它是处于DCP或是SDP相当重要。这样使它能够利用更大的可用充电电流。

  

  图1:DCP与SDP的不同点

  

  图2:传统的USB电池充电线路

  飞特蒂亚(FTDI)公司致力于简化USB充电,以便将开发时间、系统复杂性和工程资源的利用降低到最低限度,以获取最大的投资回报。这样便引出了X- CHIP系列USB控制器IC,其主要特征是支持USB电池充电的新概念。每个IC的内部电路使采用该芯片设计的便携设备能够检测到何时设备连接到了 DCP。一旦检测到DCP,X-CHIP便在其某个CBUS引脚上发出一个信号,启动充电。

  图3描述了基于X-CHIP的电池充电应用。电路在连接到USB主机端口或DCP的时候会为电池充电。CBUS引脚可用于控制电池充电率(取决于所检测到的电源和相应的电流限值)。电池的充电率由连接到凌力尔特公司(Linear)电池充电控制器LTC4053的PROG引脚的电阻决定。

  

  图3:简化的USB充电线路

  CBUS管脚包括BCD#、PWREN#和SLEEP#。BCD#是漏极开路低电平有效输出信号。它用来指示X-CHIP何时被连接到DCP。 PWREN#是漏极开路低电平有效输出信号。它显示X-CHIP已经被USB主控制器所列举。该信号用于选择PROG引脚上的电阻值,以便驱动500mA 充电。SLEEP#是推挽式低电平有效输出信号。它显示X-CHIP何时进入USB挂起模式。该信号用于在设备由USB主机供电,主控端将X-CHIP设置为挂起模式时,切断LTC4053电源。

  在图3中,LT4053的PROG引脚的阻抗由电阻R12,R13和R14设置。BCD#用于配置PROG引脚的电阻网络以达到约1A的充电电流。

  BCD#,PWREN#和SLEEP#输出设计是为了将充电应用的外部电路最小化。通常,外部MOSFET器件需要选择范围。正如前文所提,X-CHIP 驱动BCD#信号来指示DCP的检测。漏极开路输出将R14短路到地,从而LTC4053 PROG引脚的阻抗将为16.5k?与1.5k?电阻并联到地。这能够触发将近1A的充电电流。当X-CHIP连接到标准USB主控制器时,这个引脚不会驱动,设备作为一个传统的USB接口芯片来工作。由于BCD#信号是没有内部上拉的漏极开路输出,它可用来将电阻R14下拉到地,而不需要使用任何外部 MOSFET。

  在设备启动时,CBUS引脚默认为输入,并具有微弱的上拉,直到读取MTP ROM。这将发生将近14ms时间,之后,CBUS引脚将采用它们所选的功能,像本文中所描述的那样工作。

  本文小结

  得益于USB的广泛应用,USB端口显然是便携式设备获取电源的便利之所,通过单独互连便可以提供10W功率,供应给各种不同的设备。而且,各国(包括中国和欧盟成员国)USB充电标准化的推行使消费者能够采用更少的充电电缆。这将在增加便利的同时,减少每年进入环境的电子废物的数量(这主要是由定制适配器产生的)。通过使用集成方式而不是依赖于分立器件,能够创建空间、器件和工程资源方面更优的充电电路。USB不仅是最受欢迎的数字互联线,而且是电子产品供电和电池充电的关键系统部件。

关键字:USB端口  电池充电 编辑:探路者 引用地址:高效USB端口电池充电设计方案

上一篇:基于EDA技术的航空电源逆变控制电路设计
下一篇:Linux2.6内核中的最新电源管理技术综述

推荐阅读最新更新时间:2023-10-12 22:44

15秒内完成汽车电池充电的新技术
    瑞士ABB集团已开发了一种新的电动巴士技术,能在15秒时间内完成汽车充电。而其他公司的电池技术均无法实现这一性能。     ABB开发了名为“闪速充电(FlashCharging)”的技术,乘员135人的电动巴士能利用行驶路线上的充电点进行充电。充电点的充电功率达到400千瓦,位于车辆上方。充电点与由激光控制的移动臂相连,能在15秒内为汽车电池充电。其最小化设计将有助于保护城市环境和周围风景。     这一设计的理念是,让电动巴士在一次充电后有足够动力行驶至下一个充电站。线路终点站将允许长时间的完整充电,而完整充电后汽车可行驶更长距离。除更快的充电时间之外,这一系统还使用了名为TOSA的无碳排放解决方案,从清洁的水
[汽车电子]
基于STDES-2KW5CH48V-适用于工业轻型电动汽车的2.5 kW - 48 V电池充电器参考设计
介绍 STDES-2KW5CH48V 参考设计主要为工业轻型电动汽车 (LEV) 提供充电解决方案,例如电动自行车、电动人力车、叉车、微型电动车。也适用于工业物流机器人。 充电器实施两种充电配置文件:一种用于锂离子电池,另一种用于铅酸电池,它们适用于电池充电的最新趋势。 充电器设计基于升压功率因数校正 (PFC) 电路,由提供高 PF 的 L4984D 控制大于 0.9,然后是基于全桥 LLC 谐振功率转换器的 DC-DC 电路,由 L6599A 控制。对于输出整流,已选择二极管与使用中心抽头的 LLC 变压器次级绕组配置。该设计采用 STM32F072CB 微控制器来控制功率级和电池充电曲线,并管理保护和用户界面。PFC
[嵌入式]
基于STDES-2KW5CH48V-适用于工业轻型电动汽车的2.5 kW - 48 V<font color='red'>电池充电</font>器参考设计
智能型铅酸蓄电池充电器的设计与实现
    摘要: 为延长计算机的使用寿命,综合浮充和循环充两种充电方法的优点,提出和分析了快充,慢充和涓流充三个阶段的充电过程,并根据此设计了应用 单片机PIC16C54进行PWM控制的智能型铅酸蓄电池充电器。经多种试验,充电效果良好。     关键词: 铅酸蓄电池 智能型充电器 单片机PIC16C54 PWM(脉冲宽度调制)控制 铅酸蓄电池的造价成本低,容量大,价格低廉,使用十分广泛,由于其固有的特性 若使用不当,寿命将会大大地缩短,影响铅蓄电池寿命的因素很多,采用正确的充电方式,能有效延长蓄电池的使用寿命,因此,设计一种智能型的铅酸蓄电池充电器是十分必要的。 1 常规充电方式
[电源管理]
如何把电池充电器嵌入到小巧的便携式产品中
Q1:请教专家如何选定对电池的充电电流的设定?脉冲充电与恒流充电有何优越点与不好之处? A1:充电电流一般要视乎电池容量及预期的充电时间而设定。举例如1C(500mAhr容量的电池,1C就是500mA了)充电一般会在3小时内完成充电,增加充电电流会将充电时间减短,但减多少则要参考电池供货商所提供的数据而定。一般来说,0.5-1C充电是比较常用的,而我们很少会把充电电流设定到大于1C,因这样会减短电池的寿命。 A1:充电电流一般要视乎电池容量及预期的充电时间而设定。举例如1C(500mAhr容量的电池,1C就是500mA了)充电一般会在3小时内完成充电,增加充电电流会将充电时间减短,但减多少则要参考电池供货商所提供
[电源管理]
Diodes USB Type-C端口保护装置,具有过电压和短路保护功能
Diodes 公司 宣布推出适用于 USB Type-C® 端口的DPO2039DABQ 4 通道保护解决方案,其不仅符合汽车规格、通过 PPAP,且符合 AEC-Q100 标准。DPO2039DABQ 是专为汽车中控系统单元、后座娱乐系统单元和车内充电等产品应用所设计。 现今采用 USB Type-C 接口的情况日渐增加,尤其是热衷于为智能设备与其他接口设备端口提供符合未来需求的汽车制造商。为此,许多设计工程师开始寻找简单有效的解决方案,以便为 USB Type-C 端口数据传输线提供线内保护。 DPO2039DABQ 为分立式数据传输线保护系列产品之一,可配合 USB Type-C 端口的 CC1、CC2、D+
[汽车电子]
Diodes <font color='red'>USB</font> Type-C<font color='red'>端口</font>保护装置,具有过电压和短路保护功能
Diodes公司2.0A、2.5A和3.0A电源开关,专为USB端口保护而设计
德克萨斯州普莱诺 - 2017年3月21日 - 由Diodes公司推出的AP22811和AP22804/AP22814电源开关,具有超低导通电阻,从而可降低功耗;它们针对通用串行总线(USB)和其他热插拔应用进行了优化。该系列器件分别支持2.0A、2.5A和3.0A的负载电流,可保护USB端口免受过流、短路和过温情况的影响,并防止因反向电流或电压造成的系统损坏。典型应用包括膝上型电脑、笔记本电脑和平板电脑、固态驱动器、机顶盒和类似的媒体设备,以及各种其他消费电子设备。 50mΩ的典型RDS(ON)可确保AP22811/22804/22814负载开关承受最小的电压下降和功率损耗,同时还能够对故障条件提供快速响应。这些器件提供具有
[电源管理]
电动汽车电池充电器电路原理图讲解
这是电动汽车电池充电器的方案图。如图所示,该电路是一个传统的电源,后面是一个由运算放大器控制的稳压器 LM338,负责控制充电状态,以检测必须停止和启动 LED 指示灯的精确时刻。 电阻分压器可实现三个阶段,首先为运算放大器获取参考电压,另一方面通过运算放大器的输出控制稳压器LM338。因此,当电流低于 Amp 介质时,当电路开始振荡,驱动晶体管电流传递到 LED 使其发光以指示负载结束时,就会发生负载脱落。 请注意,整流桥的电流为 10 安培(50V 或更高电压),因此它不适合焊接在印刷电路上,而是用螺钉固定在计算机的金属机柜上,并通过 crimpeadas 端子连接。初始滤波电容器可以焊接到板上,或者可以通过两个塑料密
[嵌入式]
电动汽车<font color='red'>电池充电</font>器电路原理图讲解
电池充电的解决方案分析
电池充电解决方案 事实上,所有3G手机都采用锂离子电池作为主电源。由于散热及空间的限制,设计师必须仔细考虑选用何种类型的电池充电器,以及还需要哪些特性来确保对电池进行安全及精确的充电。 线性锂离子电池充电器的一个明显趋势是封装尺寸继续减小。但值得关注的是在充电周期(尤其在高电流阶段)冷却IC所需的板空间或通风条件。充电器的功耗会使IC的接合部温度上升。加上环境温度,它会达到足够高的水平,使IC过热并降低电路可靠性。此外,如果过热,许多充电器会停止充电周期,只有当接合部温度下降后才恢复工作。如果这种高温持续存在,那么 充电器“停止和开始”的反复循环也将继续发生,从而延长充电时间。为减少这些风险,用户只能选择减小充电电流来延长
[电源管理]
<font color='red'>电池充电</font>的解决方案分析
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved