搞定DC/DC电源转换方案设计,必看金律十一条

最新更新时间:2014-08-30来源: 互联网关键字:DC/DC 手机看文章 扫描二维码
随时随地手机看文章

  搞嵌入式的工程师们往往把单片机、ARM、DSP、FPGA搞的得心应手,而一旦进行系统设计,到了给电源系统供电,虽然也能让其精心设计的程序运行起来,但对于新手来说,有时可能效率低下,往往还有供电电流不足或过大引起这样那样的问题,本文十大金律轻松搞定DCDC电源转换电路设计。

  第一条、搞懂DC/DC电源怎么回事

  DC/DC电源电路又称为DC/DC转换电路,其主要功能就是进行输入输出电压转换。一般我们把输入电源电压在72V以内的电压变换过程称为DC/DC转换。常见的电源主要分为车载与通讯系列和通用工业与消费系列,前者的使用的电压一般为48V、36V、24V等,后者使用的电源电压一般在24V以下。不同应用领域规律不同,如PC中常用的是12V、5V、3.3V,模拟电路电源常用5V 15V,数字电路常用3.3V等,现在的FPGA、DSP还用2V以下的电压,诸如1.8V、1.5V、1.2V等。在通信系统中也称二次电源,它是由一次电源或直流电池组提供一个直流输入电压,经DC/DC变换以后在输出端获一个或几个直流电压。

  第二条、需要知道 的DC/DC转换电路分类

  DC/DC转换电路主要分为以下三大类:

  ①稳压管稳压电路。 ②线性 (模拟)稳压电路。 ③开关型稳压电路

  第三条、最简单的 稳压管电路设计方案

  稳压管稳压电路电路结构简单,但是带负载能力差,输出功率小,一般只为芯片提供基准电压,不做电源使用。比较常用的是并联型稳压电路,其电路简图如图(1)所示,

  

  选择稳压管时一般可按下述式子估算: (1) Uz=Vout; (2)Izmax=(1.5-3)ILmax (3)Vin=(2-3)Vout 这种电路结构简单,可以抑制输入电压的扰动,但由于受到稳压管最大工作电流限制,同时输出电压又不能任意调节,因此该电路适应于输出电压不需调节,负载电流小,要求不高的场合,该电路常用作对供电电压要求不高的芯片供电。

  第四条、基准电压源芯片稳压电路

  稳压电路的另一种形式,有些芯片对供电电压要求比较高,例如AD DA芯片的基准电压等,这时常用的一些电压基准芯片如TL431、 MC1403 ,REF02等。TL431是最常用基准源芯片,有良好的热稳定性能的三端可调分流基准电压源。它的输出电压用两个电阻就可以任意地设置到从Vref(2.5V)到36V范围内的任何值。最常用的电路应用如下图示,此时Vo=(1+R1/R2)Vref。选择不同的R1和R2的值可以得到从2.5V到36V范围内的任意电压输出,特别地,当R1=R2时,Vo=5V。

  

  其他的几个基准电压源芯片电路类似。

  第五条、串联型稳压电源的电路认识

  串联型稳压电路属直流稳压电源中的一种,其实是在三端稳压器出现之前比较常用的直流供电方法,在三端稳压器出现之前,串联稳压器通常有OP放大器和稳压二极管构成误差检测电路,如下图,该电路中,OP放大器的反向输入端子与输出电压的检测信号相连,正向输入端子与基准电压Vref相连,Vs=Vout*R2/(R1+R2)。由于放大信号ΔVs为负值,控制晶体管的基级电压下降,因此输出电压减小在正常情况下,必有 Vref=Vs=Vout*R2/(R1+R2),调整R1,R2之比可设定所需要的输出电压值。

  图中所示只是这也是三端稳压器的基本原理,其实负载大小可以可以把三极管换成达林顿管等等,这种串联型稳压电路做组成的直流稳压电源处理不当,极易产生振荡。现在没有一定模拟功底的工程师,一般现在不用这种方法,而是直接采用集成的三端稳压电路,进行DC/DC转换电路的使用。

  

  第六条、 线性(模拟)集成稳压电路常用设计方案

  线性稳压电路设计方案主要以三端集成稳压器为主。三端稳压器,主要有两种:

  一种输出电压是固定的,称为固定输出三端稳压器,三端稳压器的通用产品有78系列(正电源)和79系列(负电源),输出电压由具体型号中的后面两个数字代表,有5V,6V,8V,9V,12V,15V,18V,24V等档次。输出电流以78(或79)后面加字母来区分。L表示0.1A,M表示 0.5A,无字母表示1.5A,如78L05表求5V 0.1A。

  另一种输出电压是可调的线性稳压电路,称为可调输出三端稳压器,这类芯片代表是是LM317(正输出)和LM337(负输出)系列。其最大输入输出极限差值在40V,输出电压为1.2V-35V(-1.2V--35V)连续可调,输出电流为0.5-1.5A,输出端与调整端之间电压在1.25V,调整端静态电流为50uA。

  其基本原理相同,均采用串联型稳压电路。在线性集成稳压器中,由于三端稳压器只有三个引出端子,具有外接元件少,使用方便,性能稳定,价格低廉等优点,因而得到广泛应用。

  第七条 、DCDC转换开关型稳压电路设计方案

  上面所述的几种DCDC转换电路都属于串联反馈式稳压电路,在此种工作模式中集成稳压器中调整管工作在线性放大状态,因此当负载电流大时,损耗比较大,即转换效率不高。因此使用集成稳压器的电源电路功率都不会很大,一般只有2-3W,这种设计方案仅适合于小功率电源电路。

  采用开关电源芯片设计的DCDC转换电路转化效率高,适用于较大功率电源电路。目前得到了广泛的应用,常用的分为非隔离式的开关电源与隔离式的开关电源电路。

  DCDC转换开关型稳压电路设计方案,采用开关电源芯片设计的DCDC转换电路转化效率高,适用于较大功率电源电路。目前得到了广泛的应用,常用的分为非隔离式的开关电源与隔离式的开关电源电路。当然开关电源基本的拓扑包括降压型、升压型、升降压型及反激、正激、桥式变化等等。

  非隔离式DCDC开关转换电路设计方案。

  隔离式DCDC开关转换电路设计方案。

  第八条、 非隔离式DCDC开关转换集成电路芯片电路设计方案

  DCDC开关转换集成电路芯片,这类芯片的使用方法与第六条中的LM317非常相似,这里用L4960举例说明,一般是先使用50Hz电源变压器进行AC-AC变换,将~220V降至开关电源集成转换芯片输入电压范围比如1.2~34V,由L4960进行DC-DC变换,这时输出电压的变化范围下可调至5V,上调至40V,最大输出电流可达2.5A(还可以接大功率开关管进行扩流),并且内设完善的保护功能,如过流保护、过热保护等。尽管L4960 的使用方法与LM317差不多,但开关电源的L4960与线性电源的LM317相比,效率不可同曰而语,L4960最大可输出100W的功率 (Pmax=40V*2.5A=100W),但本身最多只消耗7W,所以散热器很小,制作容易。与L4960类似的还有L296,其基本参数与L4960 相同,只是最大输出电流可高达4A,且具有更多的保护功能,封装形式也不一样。这样的芯片比较多,比如,LM2576系列,TPS54350,LTC3770等等。 一般在使用这些芯片时,厂家都会详细的使用说明和典型电路供参考。

  第九条 、隔离的DCDC开关电源模块电路设计方案

  常用的隔离DC/DC转换主要分为三大类:1.反激式变换。2.正激式变换。3.桥式变换

  常用的单端反激式DC/DC变换电路,这类隔离的控制芯片型号也不少。控制芯片典型代表是常用的UC3842系列。这种是高性能固定频率电流的控制器,主要用于隔离AC/DC、DC/DC转换电路。其主要应用原理是:电路由主电路、控制电路、启动电路和反馈电路4 部分组成。主电路采用单端反激式 拓扑,它是升降压斩波电路演变后加隔离变压器构成的,该电路具有结构简单, 效率高, 输入电压范围宽等优点。 控制电路是整个开关电源的核心,控制的好坏直接决定了电源整体性能。这个电路采用峰值电流型双环控制,即在电压闭环控制系统中加入峰值电流反馈控制。 这类方案选择合适的变压器及MOS管可以把功率做的很大,与前面几种设计方案相比电路结构复杂,元器件参数确定比较困难,开发成本较高,因此需要此方案时可以优先选择市面上比较廉价的DC/DC隔离模块。

  第十条、 DCDC开关集成电源模块方案

  很多微处理器和数字信号处理器(DSP)都需要内核电源和一个输入/输出(I/O)电源,这些电源在启动时必须排序。设计师们必须考虑在加电和断电操作时内核和I/O电压源的相对电压和时序,以符合制造商规定的性能规格。如果没有正确的电源排序,就可能出现闭锁或过高的电流消耗,这可能导致微处理器I /O端口或存储器、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)或数据转换器等支持器件的I/O端口损坏。为了确保内核电压正确偏置之前不驱动I/O负载,内核电源和I/O电源跟踪是必需的。现在有专门的电源模块公司量身定做 一些专用的开关电源模块,主要是那些对除去常规电性能指标以外,对其体积小,功率密度高,转换效率高,发热少,平均无故障工作时间长,可靠性好,更低成本更高性能的DC/DC电源模块。这些模块结合了实现即插即用(plug-and-play)解决方案所需的大部分或全部组件,可以取代多达40个不同的组件。这样就简化了集成并加速了设计,同时可减少电源管理部分的占板空间。

  最传统和最常见的非隔离式DC/DC电源模块仍是单列直插(SiP)封装。这些开放框架的解决方案的确在减少设计复杂性方面取得了进展。然而,最 简单的是在印刷电路板上使用标准封装的组件。

  第十一条、DCDC电源转换方案的选择注意事项

  本条金律也是本文的总结,很重要。本文这里主要大致介绍了DCDC电源转换的稳压管稳压、线性(模拟)稳压、DCDC开关型稳压三种电路模式的几种常用的设计方法方案。

  ①需要注意的是稳压管稳压电路不能做电源使用,只能用于没有功率要求的芯片供电;②线性稳压电路电路结构简单,但由于转化效率低,因此只能用于小功率稳压电源中;③开关型稳压电路转化效率高,可以应用在大功率场合,但其局限性在电路结构相对复杂(尤其是大功率电路),不利于小型化。因此在设计过程中,可根据实际需要选择合适的设计方案。

关键字:DC/DC 编辑:探路者 引用地址:搞定DC/DC电源转换方案设计,必看金律十一条

上一篇:Linux2.6内核中的最新电源管理技术综述
下一篇:从构思到实践 如何完成开关电源的合理设计

推荐阅读最新更新时间:2023-10-12 22:44

一 STM32 ADC 采样 频率的确定
本文阐述了直流偏置电源对敏感模拟应用中所使用运算放大器 (op amp) 产生的影响,此外还涉及了电源排序及直流电源对输入失调电压的影响。另外,本文还介绍了一种通过线性稳压器(一般不具有追踪能力)轻松实施追踪分离电源的方法,以帮助最小化直流偏置电源带来的一些不利影响。   在许多运算放大器电路中,直流偏置电源会影响运算放大器的性能,特别是在与高位计数模数转换器 (ADC) 一起使用或者用于敏感传感器电路的信号调节时。直流偏置电源电压决定放大器的输入共模电压以及许多其他规范。   在上电期间,必须协调直流偏置电源的顺序来防止运算放大器锁闭。这样会毁坏、损坏或者阻止运算放大器正常运行。本文解释了追踪电源对运算放大器的重要性,并
[模拟电子]
一 STM32 A<font color='red'>DC</font> 采样 频率的确定
基于反激式电路拓扑的DC/DC变换器并联输出的均流变换器设计
本文主要通过对Droop法DC/DC变换器并联均流技术的研究,设计了一种基于反激式电路拓扑的两个DC/DC变换器并联输出的均流变换器。   单端反激电路的电路拓扑及工作原理   电路拓扑      图1 反激式变换器   反激式变换器是在基本Buck-Boost变换器中插入变压器形成的,线路组成见图1所示。变压器原边绕组其实是充当一个储能电感的作用,后文将叙述到初级电感量的设计将影响到反激式变换器的工作模式。   电路工作的第一阶段是能量存储阶段,此时开关管Tr导通,原边绕组电流Ip的线性变化遵循式(1)。   (1)    电路工作的第二阶段是能量传送阶段,此时开关管Tr关断,原边
[电源管理]
基于反激式电路拓扑的<font color='red'>DC</font>/<font color='red'>DC</font>变换器并联输出的均流变换器设计
如何查出OLED中DC生产测的试测量误差
测量误差的来源是由测试系统的精度、以及在对OLED给出信号和进行测量期间所未曾想到的瞬态过程引起的。在进行快速的生产测试时,在稳定状态下进行精确DC测量的能力,是与尽可能快地完成测试的需求相互牵制的。测试周期的时间长短是由源/测量以及开关操作组成的,而这一周期时间可以有非常大的变化范围。比如,如果2400被设置成用最短的测试时间间隔(aperture)完成操作,即0.01 NPLC,那么源/测量过程就可以在1ms内完成。如果把积分(integraTIon)周期或测量时间增加到1.0 NPLC,那么测量时间就增加到大约17ms.用牺牲测试速度来增加测试时间间隔的好处是,可以得到极优的噪声抑制,也就是在比较“安静”的状态下进行测试。
[测试测量]
如何查出OLED中<font color='red'>DC</font>生产测的试测量误差
Maxim发布新型DC-DC降压转换器
Maxim日前推出MAX17572和MAX17574 Himalaya同步降压DC-DC转换器,帮助系统架构师,快速实现符合国际电工委员会(IEC)标准,及安全完整性等级(SIL)标准要求的设计,确保系统的长期稳定性,新型高效转换器可将功耗降低40%、方案尺寸减小50%。 西门子Chemnitz驱动事业部硬件开发负责人Andreas Kuhn表示,工业设备的控制电源必须支持60V输入和低散热的需求,进而保证可靠的运作和标准的执行,透过采用Maxim最新的Himalaya DC-DC转换器,可以满足来自SINAMICS驱动器系列的需求。 工业市场正在向数字化快速发展,系统的安全性、效能以及智能化水平也在不断提升。 从传感器到控制组件
[半导体设计/制造]
一种电压-电压SPWM控制DC/AC电路的设计
前言   正弦波逆变电源被广泛的应用于电力、邮电、通信、航天等各个领域, 而且随着微电脑技术的不断发展和普及,正弦波逆变电源的应用越来越广。为了满足用户对电能质量的要求,逆变电源在直流输入电压波动的情况下应保持输出电压恒定。传统的电压单环控制一般存在输出电压波动大、动态响应慢等缺点,很难实现精确控制。在逆变电路中为了克服以上不足,采用电压前馈控制技术来解决此问题。本文在单相SPWM逆变的基础上,采用前馈调整三角载波和反馈调整正弦波相结合的电压- 电压复合控制方案,较好地解决了输出电压瞬态偏离问题,且实现简单。   电压- 电压复合控制基本思想   在DC/AC逆变电路中, 输出电压与输入电压存在一定的线性关系。当输入电压变
[电源管理]
一种电压-电压SPWM控制<font color='red'>DC</font>/AC电路的设计
Nvidia CEO表示苹果有意采用AWDC技术
  6月9日消息,即将举行的苹果全球开发者大会(AWDC)的热点将是Mac和iPhone的软件开发,然而苹果的另一个动向也值得关注,Nvidia的CUDA技术有可能被打造成为iPhone的媒体格式之一,CUDA是家庭电影的一项自动解码技术。 据国外媒体报道,Nvidia首席执行官黄仁勋上周接受采访时指出,苹果可能计划将Nvidia的CUDA技术列为此次WWDC大会的主题之一。CUDA是一项编程技术,开发者可通过该技术充分发挥Nvidia GeForce 8600M的显卡的独特平行处理技术,苹果MacBook Pro笔记本电脑就采用了该显卡。Nvidia 今年二月发布了面向Mac OS X系统的CUDA测试版。
[焦点新闻]
现场总线与DCS系统的网络集成之浅谈
引言   新的基于现场总线技术的控制策略和网络结构将对现有的仪表及控制系统产生革命性的影响。从现场总线技术的本质特征上分析了其对传统分散控制系统DCS的冲击,并结合dcs的网络结构特点,给出了现场总线集成于dcs的3种实现方法。   工业控制从早期的就地控制、集中控制,已经发展到现在的集散控制(dcs),在过去的20年中,过程工业对dcs系统及相关的仪表装置进行了大量的投入,dcs系统的应用结果得到了用户的肯定。4-20mA信号是dcs系统及现场设备相互连接的最本质特点,这是控制系统和仪表装置发展的一大进步。   然而现在,数字化和网络化成为当今控制网络发展的主要方向。人们意识到传统的模拟信号只能提供原始的测量和控制信
[嵌入式]
STM32通过io模拟SPI与ADC124S021通信
/***************************** U11 *********************************/ //extern unsigned int ad_val; unsigned char ch_temp; #define AD_FF 1 #define AD_ZF 2 #define AD_MF 3 #define AD_GM 4 #define ADC124S21_CS_PA4_OUT GPIO_Pin_4 //使用PA4作为输出,控制ADC124S21芯片的片选 #define ADC124S21_CLK_PA5_SCK
[单片机]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved