如何为电源系统开关控制器选择合适的MOSFET?

最新更新时间:2014-09-21来源: 互联网关键字:电源  开关控制器  MOSFET 手机看文章 扫描二维码
随时随地手机看文章

  DC/DC开关控制器的MOSFET选择是一个复杂的过程。仅仅考虑MOSFET的额定电压和电流并不足以选择到合适的MOSFET。要想让MOSFET维持在规定范围以内,必须在低栅极电荷和低导通电阻之间取得平衡。在多负载电源系统中,这种情况会变得更加复杂。

  DC/DC开关电源因其高效率而广泛应用于现代许多电子系统中。例如,同时拥有一个高侧FET和低侧FET的降压同步开关稳压器,如图1所示。这两个FET会根据控制器设置的占空比进行开关操作,旨在达到理想的输出电压。降压稳压器的占空比方程式如下:

  图1:降压同步开关稳压器原理图

  FET可能会集成到与控制器一样的同一块芯片中,从而实现一种最为简单的解决方案。但为了提供高电流能力及(或)达到更高效率,FET需要始终为控制器的外部元件,这样可以实现最大散热能力,因为它让FET物理隔离于控制器,并且拥有最大的FET选择灵活性。缺点是FET选择过程更加复杂,原因是要考虑的因素有很多。

  一个常见问题是“为什么不让这种10AFET也用于我的10A设计呢?”答案是这种10A额定电流并非适用于所有设计。选择FET时需要考虑的因素包括额定电压、环境温度、开关频率、控制器驱动能力和散热组件面积。关键问题是,如果功耗过高且散热不足,则FET可能会过热起火。用户可以利用封装/散热组件ThetaJA或者热敏电阻、FET功耗和环境温度估算某个FET的结温,具体方法如下:

  其他损耗形成的原因还包括输出寄生电容、门损耗,以及低侧FET空载时间期间导电带来的体二极管损耗,但在本文中将主要讨论AC和DC损耗。

  图2中高亮部分显示了这种情况。根据公式4,降低这种损耗的一种方法是缩短开关的升时间和降时间。

  图2:AC损耗图

  通过选择一个更低栅极电荷的FET,可以达到这个目标。另一个因数是开关频率。开关频率越高,图3所示升降过渡区域所花费的开关时间百分比就越大。

  图3:开关频率对AC损耗的影响

  因此,更高频率就意味着更大的AC开关损耗。所以,降低AC损耗的另一种方法便是降低开关频率,但这要求更大且通常也更昂贵的电感来确保峰值开关电流不超出规范。

  开关处在导通状态下出现DC损耗,其原因是FET的导通电阻。这是一种十分简单的I2R损耗形成机制,如图4所示。但是,导通电阻会随FET结温而变化,这便使得这种情况更加复杂。

  图4:DC损耗图

  所以,使用公式3、4和5准确计算导通电阻时,就必须使用迭代方法,并要考虑到FET的温升。降低DC损耗最简单的一种方法是选择一个低导通电阻的FET。另外,DC损耗大小同FET的百分比导通时间成正比例关系,其为高侧FET控制器占空比加上1减去低侧FET占空比,如前所述。由图5可以知道,更长的导通时间就意味着更大的DC开关损耗,因此,可以通过减小导通时间/FET占空比来降低DC损耗。例如,如果使用了一个中间DC电压轨,并且可以修改输入电压的情况下,设计人员或许就可以修改占空比。

  尽管选择一个低栅极电荷和低导通电阻的FET是一种简单的解决方案,但是需要在这两种参数之间做一些折中和平衡,如图6所示。低栅极电荷通常意味着更小的栅极面积/更少的并联晶体管,以及由此带来的高导通电阻。另一方面,使用更大/更多并联晶体管一般会导致低导通电阻,从而产生更多的栅极电荷。这意味着,FET选择必须平衡这两种相互冲突的规范。另外,还必须考虑成本因素。

  图6:可有效平衡这两种参数的一些新上市FET的导通电阻和栅极电荷对比图  低占空比设计意味着高输入电压,对这些设计而言,高侧FET大多时候均为关断,因此DC损耗较低。但是,高FET电压带来高AC损耗,所以可以选择低栅极电荷的FET,即使导通电阻较高。低侧FET大多数时候均为导通状态,但是AC损耗却最小。这是因为,导通/关断期间低侧FET的电压因FET体二极管而非常地低。因此,需要选择一个低导通电阻的FET,并且栅极电荷可以很高。图7显示了上述情况。

 

 

  图7:低占空比设计的高侧和低侧FET功耗

  如果降低输入电压,则可以得到一个高占空比设计,其高侧FET大多数时候均为导通状态,如图8所示。这种情况下,DC损耗较高,要求低导通电阻。根据不同的输入电压,AC损耗可能并不像低侧FET时那样重要,但还是没有低侧FET那样低。因此,仍然要求适当的低栅极电荷。这要求在低导通电阻和低栅极电荷之间做出妥协。就低侧FET而言,导通时间最短,且AC损耗较低,因此可以按照价格或者体积而非导通电阻和栅极电荷原则,选择正确的FET。

  图8:高占空比设计的高侧和低侧FET功耗

  假设一个负载点(POL)稳压器可以规定某个中间电压轨的额定输入电压,那么最佳解决方案是什么呢,是高输入电压/低占空比,还是低输入电压/高占空比呢?在TI的WEBENCH电源设计师中创建一个设计,并以此作为例子。使用不同输入电压对占空比进行调制,同时查看FET功耗情况。图9中,高侧FET反应曲线图表明,占空比从25%~40%时AC损耗明显降低,而DC损耗却线性增加。因此,35%左右的占空比,应为选择电容和导通电阻平衡FET的理想值。不断降低输入电压并提高占空比,可以得到最低的AC损耗和最高的DC损耗,就此而言,可以使用一个低导通电阻的FET,并折中选择高栅极电荷。

  图9:高侧FET损耗与占空比的关系

  如图10所示,控制器占空比由低升高时DC损耗线性降低(低侧FET导通时间更短),高控制器占空比时损耗最小。整个电路板的AC损耗都很低,因此任何情况下都应选择使用低导通电阻的FET。

  图10:低侧FET损耗与控制器占空比的关系

  图11显示了我们将高侧和低侧损耗组合到一起时总效率的变化情况。可以看到,这种情况下,高占空比时组合FET损耗最低,并且效率最高。效率从94.5%升高至96.5%。不幸的是,为了获得低输入电压,必须降低中间电压轨电源的电压,使其占空比增加,原因是它通过一个固定输入电源供电。因此,这样可能会抵消在POL获得的部分或者全部增益。另一种方法是不使用中间轨,而是直接从输入电源到POL稳压器,目的是降低稳压器数。这时,占空比较低,必须小心地选择FET。

  图11:总损耗与效率和占空比的关系

  在有多个输出电压和电流要求的电源系统中,情况会更加复杂。可以利用WEBENCH电源设计师工具,让这类系统的折中选择过程可视化。这种工具让用户可以看到使用不同中间轨电压的各种情景,对比不同POL稳压器占空比的效率、成本和体积。图12显示了一个系统,其输入电压为28V,共有8个负载,4个不同电压,范围为3.3~1.25V。共有3种对比方法:1)无中间轨,直接通过输入电源提供28V电压,以实现POL稳压器的低占空比;2)使用12V中间轨,POL稳压器中等占空比;3)使用5V中间轨,高POL稳压器占空比。

  图12:表明输入、中间轨、负载点(POL)电源和负载的电源系统

  图13和表1显示了对比结果。这种情况下,无中间轨电源的构架实现了最低成本,12V中间轨电压的构架获得了最高效率,而5V中间轨电压构架则实现了最小体积。因此,我们可以看到,对于这种大型系统而言,单POL电源情况下所看到的这些参数均没有明显的趋向。这是因为,使用多个稳压器时,除中间轨稳压器本身以外,每个稳压器都有其不同的负载电流和电压要求,而这些需求可能会相互冲突。研究这种情况的最佳方法是使用如WEBENCH电源设计师等工具,对不同的选项进行评估。

  图13:WEBENCH电源设计曲线图

  表1:中间轨电压对电源系统效率、体积和成本的影响

  总之,FET选择是一项复杂的工作,但如果选择正确,可以实现低成本、高效率的电源系统。诸如WEBENCH电源设计等工具可以帮助用户可视化地对比不同的方法,做出折中、平衡的选择,从而快速地获得理想设计。

关键字:电源  开关控制器  MOSFET 编辑:探路者 引用地址:如何为电源系统开关控制器选择合适的MOSFET?

上一篇:解析电动汽车无线充电技术(图)
下一篇:如何做好电源电子设备的电磁兼容?

推荐阅读最新更新时间:2023-10-12 22:46

电源基础知识
1、电源的基本工作原理是什么? 答:通过运行高频开关技术将输入的较高的交流电压(AC)转换为PC电脑工作所需要的较低的直流电压(DC). 2、电源的工作流程是怎样的? 答:当市电进入电源后,先经过扼流线圈和电容滤波去除高频杂波和干扰信号,然后经过整流和滤波得到高压直流电.接着通过开关电路把直流电转为高频脉动直流电,再送高频开关变压器降压.然后滤除高频交流部分,这样最后输出供电脑使用相对纯净的低压直流电. 3、EMI电路的主要作用是什么? 答:EMI电路的作用是滤除由电网进来的各种干扰信号,防止电源开关电路形成的高频扰窜电网.EMI是CCC认证一个重要内容. 4、什么是高压整流滤波电路? 答
[电源管理]
高可靠性超薄高效率单路输出医疗电源-CUS150M1
2016 年 12 月,TDK 公司发布了TDK-Lambda的新一代150W单路输出医疗开关电CU150M1系列。 CUS150M1作为超薄,高效率,高可靠性的新一代医疗电源,拥有全球输入电压范围和工业标准3x5尺寸, 广泛适用于B和BF等级医疗设备,广播和专业音响,测试与测量,分析仪器和LED标牌与显示屏,具有出色的性价比。 主要特征 紧凑型尺寸:3’’ x 5’’ x 1.2’’ (76.2 x127 x 34mm) 高效率:93% 自然冷却:150W 输出型号:12V, 18V, 24V, 36V, 48V 可选型号:/A(金属外壳)、/L(“L”型金属底座) 宽工作温度范围: -20°C ~ +70°C
[电源管理]
高可靠性超薄高效率单路输出医疗<font color='red'>电源</font>-CUS150M1
数字温度传感器DSl8820在卫星电源系统中设计原理
为加快我国卫星电源分系统的数字化设计.充分体现数字电路体积小、重量轻、功耗低、适 应性强和可靠性高等优点,提高电源分系统的电能重量比,本文以DSl8820作为温度传感器,并采用单片机控制系统进行数据的采集、计算、调节及V-T曲线控制。 卫星电源系统主要用来为整个卫星的正常运行提供稳定的电源。它是卫星电能产生、储存、变换、调节、传输分配和管理的重要分系统。其基本功能是通过物理和化学过程将太阳的光能、核能或化学能转化为电能,并根据需要对电能进行存储、调节和变换,然后向卫星其它各分系统不间断供电。我国的卫星大都采用太阳能/蓄电池供电系统。蓄电池充电终压控制采用电压一温度补偿法,即V-T控制。蓄电池温度传感器传统上一般选用热电耦或
[工业控制]
经典巡线机器人电源系统研究
   1引言   机器人巡线是指用机器人携带检测通信仪器沿 全线路行驶作业,并由机器人完成对线路运行故障的检测和对安全事故隐患的巡视,并将所检测的信息实时向地面传送,由地面进行分析处理。在常规地面运作时,一般采用小型蓄电池定时更换方式。但是,高压输电线路分布在野外,跨越山川湖泊,巡线机器人作业时,能量消耗大,而现场没有可供充电的电源,并且在巡线过程中频繁的更换蓄电池会造成诸多不便,该因素会极大的限制巡线机器人的广泛应用。   为此,本文研究了通过感应取电的方式为机器人提供电源的供电系统。    2 系统结构   为实现上述目的,设计铁芯和线圈从高压线路上获取电能,获取的电能通过开关电源转换为稳流源,并通过充电使能电路向镍氢电池
[电源管理]
经典巡线机器人<font color='red'>电源</font>系统研究
功率因数校正器(PFC)在电源应用中的重要作用
传统的离线开关模式功率转换器会产生带高谐波含量的非正弦输入电流。这会给电源线、断路开关和电力设施带来压力。此外,谐波还会影响连接同一电源线的其他电子设备。在应用于开关模式电源之前对输入电流整形的有源功率因数校正器(PFC)可以解决这个问题。 自从欧盟建立了针对电子设备的EN61000-3-2标准和A14修正案以来,PFC变得更为重要。该标准规定允许ac线电流谐波。规定视输入功率、产品类型和特定的谐波而有所不同。原始设备分类和A14修正案分类列表见下表。 人们最感兴趣的是D类规定,因为它涉及了PC、计算机监视器和电视接收器。其他设备只需满足A类规定。为了了解PFC如何工作,我们首先来看一下功率因数的基本概念。功率包括两部分:实际功率
[电源管理]
功率因数校正器(PFC)在<font color='red'>电源</font>应用中的重要作用
基于TOPSwitch-GX系列的伺服系统多输出开关电源
1 引言 多路输出开关电源广泛应用在各种复杂小功率电子系统中,就多路输出而言,通常只有输出电压低、输出电流变化范围大的一路作为主电路进行反馈调节控制,以保证在输入电压及负载变化时保持输出电压稳定,由于受变压器各个绕组间的漏感和绕组电阻等的影响,辅助输出电压随输出负载的变化而变化,通常,当主输出满载和辅助输出轻载时,辅助输出电压将升高,而当主输出轻载和辅助输出满时,辅助输出电压将降低,这就是多路输出的负载交叉调整率问题,笔者基于TOPSwitch-GX系列设计了一种多路输出开关电源,很好的解决了多路输出的负载交叉调整率问题,该电源在各种工况下都能稳定输出,主输出电压纹波小于3%,各路辅助输出纹波小于5%,负载交叉调整率小于5
[应用]
瑞萨电子推出用于RZ/G2L、RZ/V2L的完整电源解决方案
瑞萨电子推出用于RZ/G2L、RZ/V2L的完整电源解决方案可显著缩短系统设计时间 新产品可提升系统可靠性,降低整体成本,支持四层PCB板 2021 年 8 月 6 日,日本东京讯 - 全球半导体解决方案供应商瑞萨电子集团今日宣布,推出RAA215300 PMIC(电源管理IC),该产品是针对人工智能(AI)应用RZ/G2L、RZ/V2L微处理器(MPU)的完整电源解决方案,主要功能包括九个电源输出通道、一个内置充电器和一个实时时钟;其高集成度可降低设计复杂性,加快客户产品上市速度。 RAA215300包含六个降压稳压器、三个LDO和一个纽扣电池/超级电容器充电器,带有专用的VREF、VTT和VPP电源输出,支持
[电源管理]
瑞萨电子推出用于RZ/G2L、RZ/V2L的完整<font color='red'>电源</font>解决方案
汽车电源设计的六项基本原则
大多数汽车 电源 架构需要遵循六项基本原则: 1.输入 电压 VIN范围:12V电池电压的瞬变范围决定了电源转换IC的输入电压范围。 典型的汽车电池电压范围为9V至16V,发动机关闭时,汽车电池的标称电压为12V;发动机工作时,电池电压在14.4V左右。但是,不同条件下,瞬态电压也可能达到±100V。ISO7637-1行业标准定义了汽车电池的电压波动范围。图1和图2所示波形即为ISO7637标准给出的部分波形,图中显示了高压汽车电源转换器需要满足的临界条件。 除了ISO7637-1,还有一些针对燃气发动机定义的电池工作范围和环境。大多数新的规范是由不同的OEM厂商提出的,不一定遵循行业标准。但是,任
[电源管理]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved