以移相全桥为主电路的软开关电源设计全解

最新更新时间:2014-10-15来源: 互联网关键字:移相全桥  软开关电源 手机看文章 扫描二维码
随时随地手机看文章

  移相全桥变换器可以大大减少功率管的开关电压、电流应力和尖刺干扰,降低损耗,提高开关频率。如何以UC3875为核心,设计一款基于PWM软开关模式的开关电源?请见下文详解。

  主电路分析

  这款软开关电源采用了全桥变换器结构,使用MOSFET作为开关管来使用,参数为1000V/24A.采用移相ZVZCSPWM控制,即超前臂开关管实现ZVS、滞后臂开关管实现ZCS.电路结构简图如图1,VT1~VT4是全桥变换器的四只MOSFET开关管,VD1、VD2分别是超前臂开关管VT1、VT2的反并超快恢复二极管,C1、C2分别是为了实现VTl、VT2的ZVS设置的高频电容,VD3、VD4是反向电流阻断二极管,用来实现滞后臂VT3、VT4的ZCS,Llk为变压器漏感,Cb为阻断电容,T为主变压器,副边由VD5~VD8构成的高频整流电路以及Lf、C3、C4等滤波器件组成。

  

  图1 1.2kw软开关直流电源电路结构简图

  其基本工作原理如下:

  当开关管VT1、VT4或VT2、VT3同时导通时,电路工作情况与全桥变换器的硬开关工作模式情况一样,主变压器原边向负载提供能量。通过移相控制,在关断VT1时并不马上关断VT4,而是根据输出反馈信号决定移相角,经过一定时间后再关断VT4,在关断VT1之前,由于VT1导通,其并联电容C1上电压等于VT1的导通压降,理想状况下其值为零,当关断VT1时刻,C1开始充电,由于电容电压不能突变,因此,VT1即是零电压关断。

  由于变压器漏感L1k以及副边整流滤波电感的作用,VT1关断后,原边电流不能突变,继续给Cb充电,同时C2也通过原边放电,当C2电压降到零后,VD2自然导通,这时开通VT2,则VT2即是零电压开通。

  当C1充满电、C2放电完毕后,由于VD2是导通的,此时加在变压器原边绕组和漏感上的电压为阻断电容Cb两端电压,原边电流开始减小,但继续给Cb充电,直到原边电流为零,这时由于VD4的阻断作用,电容Cb不能通过VT2、VT4、VD4进行放电,Cb两端电压维持不变,这时流过VT4电流为零,关断VT4即是零电流关断。

  关断VT4以后,经过预先设置的死区时间后开通VT3,由于电压器漏感的存在,原边电流不能突变,因此VT3即是零电流开通。

  VT2、VT3同时导通后原边向负载提供能量,一定时间后关断VT2.由于C2的存在,VT2是零电压关断,如同前面分析,原边电流这时不能突变,C1经过VD3、VT3.Cb放电完毕后,VD1自然导通,此时开通VT1即是零电压开通,由于VD3的阻断,原边电流降为零以后,关断VT3,则VT3即是零电流关断,经过预选设置好的死区时间延迟后开通VT4,由于变压器漏感及副边滤波电感的作用,原边电流不能突变,VT4即是零电流开通。

  ZVZCS PWM全桥变换器拓扑的理想工作波形如图2所示,其中Uab表示主电路图3中a、b两点之间的电压,ip为变压器T原边电流,Ucb为阻断电容Ub上的电压,Urect是副边整流后的电压。

  

  图2 理想工作波形

  UC3875的主控制回路设计

  为了实现主回路开关管ZVZCS软开关,采用UC3875为其设计了PWM移相控制电路,如图3所示。考虑到所选MOSFET功率比较大,对芯片的四个输出驱动信号进行了功率放大,再经高频脉冲变压器T1、T2隔离,最后经过驱动电路驱动MOSFET开关管。

  

  图3 PWM移相控制电路

  整个控制系统所有供电均用同一个15V直流电源,实验中设置开关频率为70kHz,死区时间设置为1.5μs,采用简单的电压控制模式,电源输出直流电压通过采样电路、光电隔离电路后形成控制信号,输入到UC3875误差放大器的EA,控制UC3875误差放大器的输出,从而控制芯片四个输出之间的移相角大小,使电源能够稳定工作,图中R6、C5接在EA和E/AOUT之间构成PI控制。在本设计中把CS+端用作故障保护电路,当发生输出过压、输出过流、高频变原边过流、开关管过热等故障时,通过一定的转换电路,把故障信号转换为高于2.5V的电压接到CS+端,使UC3875四个输出驱动信号全为低电平,对电路实现保护。

  图4是开关管的驱动电路。隔离变压器的设计采用AP法,变比为1:1.3的三绕组变压器。UC3875输出的单极性脉冲经过放大电路、隔离电路和驱动电路后形成+12V/一5V的双极性驱动脉冲,保证开关管的稳定开通和关断。

  

  图4 开关管的驱动电路

  仿真与实验结果分析

  PSpice是一款功能强大的电路分析软件,对开关频率70kHz的ZVZCS软开关电源的仿真是在PSpice9.1平台上进行的。

  实验样机的主回路结构采用图1所示的电路拓扑,阻断二极管采用超快恢复大功率二极管RHRG30120,其反向恢复时间在100ns以内,满足70kHz开关频率的要求。开关管MOSFET采用IXYS公司的IXFK24N100开关管,这种型号MOS管自身反并有超快恢复二极管,其反向恢复时间约250ns。

  图5是超前桥臂开关管驱动电压与管压降波形图,(a)为仿真波形、(b)为实验波形,可见超前臂开关管完全实现了ZVS开通,VT1、VT2关断时是依赖其自身很小的结电容来实现的,从图中可以看出,关断时也基本实现了ZVS关断。

  

  图5 超前桥臂开关管驱动电压与管压降波形图

  

  图6 滞后桥臂开关管驱动电压与电流波形图

  图6是滞后桥臂开关管驱动电压与电流波形图,(a)为仿真波形、(b)为实验波形;

  图7是滞后桥臂开关管管压降与电流波形图,(a)为仿真波形、(b)为实验波形。

  

  图7 滞后桥臂开关管VT3和VT4实现ZCS关断

  从图6、图7可以看出滞后臂开关管VT3、VT4很好地实现了ZCS关断,关断时开关管电流已经为零。滞后臂开关管完全开通之前,开关管电流也几乎为零,基本实现了ZCS开通。而且滞后桥臂开关管VT3、VT4可以在很大负载范围内实现ZCS开关。

  图8是两桥臂中点之间的电压Uab的波形图,(a)为仿真波形、(b)为实验波形。

  

  图8 Uab的波形

  图9是阻断电容Cb上的电压U曲波形,(a)为仿真波形、(b)为实验波形。

  

  图9 Ucb的波形

  从上图可以看出,由于有Ucb的存在,Uab不是一个方波。当Uab=0时,阻断电容Cb上的电压Ucb使原边电流ip逐渐减小到零,由于阻断二极管的阻断作用,ip不能反向流动,从而实现了滞后桥臂的ZCS开关。

  综上所述,我们能够发现,采用UC3875作为核心控制器件的好处是结构简单、性能可靠。并且主电路的开关管全部实现了软开关,同时还避免了ZVS以及ZCS模式当中常见的一些错误。能够显着的减少在开关过程当中开关管发生的损耗,进而提高开关频率,减少电源的体积并减轻重量。

关键字:移相全桥  软开关电源 编辑:探路者 引用地址:以移相全桥为主电路的软开关电源设计全解

上一篇:从构思到实践 如何完成开关电源的合理设计
下一篇:汽车设计需要具超低 IQ 的 65V 同步降压型转换器

推荐阅读最新更新时间:2023-10-12 22:46

基于移相控制的大功率并联软开关电源的研究
1 引言 随着现代化社会的发展,大功率开关电源的应用越来越广泛。在单晶硅行业里,单台大功率开关电源作为一种新的单晶硅直流加热电源得到了成功应用,它与相控整流电源相比。在效率、体积、重量、输出纹波等方面均表现出明显优势。但单台大功率开关电源在设计和制造中存在较大困难,且成本不合算,可靠性和稳定性难以保障,不利于长远发展。 针对单台大功率开关电源的不足,采用移相全桥ZVS控制技术和主从控制方式,设计并研制了一台输出电压从O一60 V、电流从0~3.3 kA连续可调,额定功率为180 kW的大功率并联软开关电源。电源采用N+1并联备份。可获得冗余功率。使其在部分失效时仍可以提供100%负载功率,并可在不间断系统输电情况下,对失效
[电源管理]
基于移相控制的大功率并联<font color='red'>软开关</font><font color='red'>电源</font>的研究
ZVT-PWM移相软开关通信基础--电源模块的设计
  1引言   随着电力电子器件从晶闸管(SCR)到大功率晶体管(GTR),再发展到VMOSFET和IGBT等,功率变换技术也经历了从负载谐振变换到硬开关PWM,再到双零开关和双零变换的发展过程。双零变换技术包括零电压变换(ZVT)和零电流变换(ZCT)两种,它们的基本工作原理是采用辅助开关管与谐振电路共同配合主开关管工作,使其分别实现零电压开关(ZVS)或零电流开关(ZCS),是真正意义上的定频软开关PWM变换,具有定频PWM变换和软开关变换的共同优点,所以双零变换技术是功率变换技术的发展趋势之一。   2移相全桥ZVT软开关变换技术   双零变换技术中,ZVT变换技术应用比较普遍,主要用于高频有源PFC和DC/
[电源管理]
ZVT-PWM移相<font color='red'>软开关</font>通信基础--<font color='red'>电源</font>模块的设计
ZVS移相全桥控制器UCC3895及其应用
1.引言: UCC3895 芯片是Texaslnstruments公司生产的专用于PWM移相全桥DC/DC变换器的新型控制芯片。它在 UC3875 (79)系列原有功能的基础上增加了自适应死区设置和PWM软关断能力,这样就适应了负载变化时不同的准谐振软开关要求。同时由于它采用了BICMOS工艺,使得它的功耗更小,工作频率更高,因而更加符合电力电子装置高效率、高频率、高可靠的发展要求。通过不同的外围电路设置,既可工作于电压模式,也可工作于电流模式,并且软启动/软停止可按要求进行调节。 2.UCC3895芯片介绍 UCC3895芯片采用了20个引脚实现了以下功能:自适应死区时间设置;振荡器双向同步功能;电压模式控制或电
[工业控制]
ZVS<font color='red'>移相全桥</font>控制器UCC3895及其应用
移相全桥ZVSDC/DC变换器的极点配置自适应预测控制
摘要:阐述了移相全桥ZVSDC/DC变换器准线性建模思想以及极点配置自适应数字控制策略,并在此基础上设计了变换器的数字控制系统,然后给出了电路仿真结果。仿真结果表明采用新提出的控制策略不仅保证了上述变换器在各变化的工作点都能获得良好的动态响应和稳定性,而且具有控制算法简单和控制过程易于实现的优点。 关键词:准线性模型;极点配置自适应控制;移相全桥ZVS变换器   1 引言 近年来,移相全桥ZVSPWMDC/DC变换器由于它的显著特点已经在中大功率场合得到广泛的应用。而通过采用模拟芯片UC3895调节其两桥臂间对应开关的导通相位差,可实现其PWM模拟控制。近年来随着微处理器价格不断下降和计算能力不断增强,
[电源管理]
<font color='red'>移相全桥</font>ZVSDC/DC变换器的极点配置自适应预测控制
移相全桥ZVZCSDC/DC变换器综述
摘要:概述了9种移相全桥ZVZCSDC/DC变换器,简要介绍了各种电路拓扑的工作原理,并对比了优缺点,以供大家参考。 关键词:移相控制;零电压零电流开关;全桥变换器 1概述 所谓ZVZCS,就是超前桥臂实现零电压导通和关断,滞后桥臂实现零电流导通和关断。ZVZCS方案可以解决ZVS方案的故有缺陷,即可以大幅度降低电路内部的循环能量,提高变换效率,减小副边占空比丢失,提高最大占空比,而且其最大软开关范围不受输入电压和负载的影响。 图1 滞后桥臂零电流开关是通过在原边电压过零期间使原边电流复位来实现的。即当原边电流减小到零后,不允许其继续反方向增长。原边电流复位目前主要有以下几种方法: 1)利用超前桥臂开关管的反向雪崩击穿,使储存在变压
[电源管理]
基于准谐振型软开关的高频开关电源变换器
    在高频开关电源的DC-DC变换电路中,功率开关管在控制信号强制控制下,有电压时被开通,有电流时被关断,这种工作方式称为硬开关。传统的PWM开关方式属于硬开关技术,它的缺点显而易见。     (1)开关管无论在导通或截止时,电压和电流均不为零,功率器件承受的电压、电流应力大,开关管存在功耗,且开关频率越高,功耗愈大。     (2)开关管关断时,电路中的感性元件和容性元件会产生幅值很高的尖峰电压和尖峰电流,对开关器件造成危害,且开关频率越高,损害越大。     (3)随着工作频率的增高,会产生严重的电磁干扰,对自身电路及电网和周边电子设备造成影响。     理想的关断过程是电流先降到零,电压再缓慢上升到断态值,关断损耗近似为零
[电源管理]
基于准谐振型<font color='red'>软开关</font>的高频开关<font color='red'>电源</font>变换器
基于UCC3895的移相全桥变换器的设计
   引言   移相全桥(Full-Bridge,FB)PWM变换器是一种应用广泛,适用于较大功率、低电压等场合的变换器。该变换器采用PWM移相控制,在不附加其他额外元器件,电路成本和复杂程度基本不变的情况下,利用变压器的漏感和功率开关管的结电容进行谐振,使功率管实现零电压开关(ZVS),从而减小了开关损耗,变换器的效率可大于80%,并且开关电压应力的减小使得开关频率可以进一步得到提高,可达到100 kHz~500 kHz,故该变换器适应当今开关电源高频化、高效化的发展趋势,有广阔的应用前景。   实现全桥变换器的移相PWM控制的方法很多,比如:采用分立器件进行逻辑组合,采用专用的集成控制芯片,采用DSP或CPLD数字
[电源管理]
一种新型电流型移相全桥软开关变换器的设计
   0 引言   开关电源的发展趋势是高频、高功率密度、高效率、模块化以及低的电磁干扰(EMI)等,但传统的硬开关变换器不仅存在严重的电磁干扰(EMI),而且功率管的开关损耗限制了开关频率的提高,软开关应运而生。目前实现软开关主要有两种方法:一为零电压(ZVS)开关,另一种为零电流(ZCS)开关。   全桥DC/DC变换器广泛应用于中大功率的场合。根据其输入端为电容或者是电感,全桥变换器可分为电流型和电压型两种。过去的数十年问,电压型全桥变换器的软开关技术得到深入研究。而电流型却没有得到足够的重视。事实上,电流型变换器具有很多的优点。最显著的优点之一是在多路输出的应用场合中,它相当于将滤波电感放置于变压器的原边,因而整个
[电源管理]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved