软启动抑制开关电源浪涌的原理及注意

最新更新时间:2014-10-23来源: 互联网关键字:软启动  抑制开关  电源浪涌 手机看文章 扫描二维码
随时随地手机看文章

开关电源之所以普及的非常快,是因为其能够满足大部分的电子电路设计要求,再加上开关电源成本低、效率高,所以才能够很快流行开来,成为主流的电路设计方法。但是开关电源也并非完美的,大部分开关电源都存在一个弊病,就是在通电的瞬间需要一个比较大的电流,而这个电流很有可能是电路在静态工作模式下的10-100倍。

由于电流的瞬间增大,将很有可能产生两个方面的问题。第一点,如果电路从直流电源得不到足够的启动电流,那么开关电源就有可能成为锁定的状态,导致无法启动。第二点,这种浪涌电流可能造成输入电源电压的降低,足以引起使用同一输入电源的其它动力设备瞬间掉电。

常见的对开关电源中输入浪涌电流的限制方法,是采用在电路中串联NTC的方式,NTC是负温度系数热敏限流电阻器的缩写。这种方法较为简单,然而这种简单的方法具有很多缺点:如NTC电阻器的限流效果受环境温度影响较大、限流效果在短暂的输入主电网中断(约几百毫秒数量级)时只能部分地达到、NTC电阻器的功率损耗降低了开关电源的转换效率。其实上面提出的这两个问题可以通过一个“软启动电路”来解决,下面就对这种解决方法进行详细的介绍。

开关电源浪涌产生的原因

在谈解决方案之前,首先要了解浪涌电流是如何产生的,这样才能达到最有效抑制的目的。目前使用的大多数开关电源和逆变器都是采用脉冲宽度调制来对电能进行转换。其中的核心部件是直流-直流转换器。如图1所示的开关电源中,输入电压首先经过干扰滤波,再通过桥式整流器变成直流,然后通过一个很大的电解电容器进行波形平滑,之后才能进入真正的直流-直流转换器。输入浪涌电流就是在对这个电解电容器进行初始充电时产生的,它的大小取决于起动上电时输入电压的幅值,以及由桥式整流器和电解电容器所形成回路的总电阻。如果恰好在交流输入电压的峰值点起动时,就会出现峰值输入浪涌电流。

不仅是开关电源,变压器的电源在进行启动同样会出现输入浪涌电流。然而,这种输入浪涌电流的出现原因有所不同。当变压器电源在正弦输入电压的过零点起动时,变压器磁芯的磁化在前几个周期中被迫进入一种不平衡状态。结果,磁芯在每个半周饱和。

而在此时,产生的励磁电流仅由较小的漏电感寄生电阻来抑制,这会产生很大的输入浪涌电流。变压器电源通常带有特殊的输入浪涌电流限制器来保证其在正弦输入电压的峰值起动,以防止出现很高的输入浪涌电流。而如果在开关电源中也使用这种输入浪涌电流限制器,则如前文所述,后果恰恰相反,不但起不到限流作用,反而会导致出现峰值输入浪涌电流。所以今天只讨论开关电源浪涌电流的产生和消除,变压器电源不在论述范围。软启动电路电气工作原理

与上述的传统方法不同,如果在开关电源中采用软启动电路,进行浪涌电流的抑制,则能够完全避免传统浪涌电流抑制方法的缺点。通过“软启动”来控制开关电源的启动以消除浪涌电流,包含这样两条设计原则:即在加电瞬间除去负载、同时限制有用的电流。如果不驱动负载,开关电源启动时一般电流很小。在很多情况下,启动电流实际有可能要比利用这种方法保持的稳态工作电流小。

下面我们通过一个例子来讲解软启动技术,例中的开关电源为-48 V~+5 V,含有LT1172HVCT的稳压器,从负到正补偿提升式(buck-boost)转换器,其实任何一个从-48 V~+5 V的开关电源都能工作。其中,软启动电路和开关电源电路是相互独立的,电气原理如图2所示。

图2当中的电路工作原理其实非常简单,在电路通电之初,全部晶体管都是截止的,C1处于放电状态,这时负载是断开的,输入电流由限流电阻R4分流。当开关电源启动时,它的输出电压开始升高,在输出电压达到4.5 V的时候(D1两端3.9 V加上Q3的Veb=0.6 V),Q3导通并对C1充电。当C1两端的电压VC达到Q1的门限电压时(通常为3 V),Q1导通。VC继续升高,Q1完全导通,对输入电流提供一个低阻抗通路,并且有效地旁路了限流电阻R4。当VC达到7.4 V时(D2两端6.8 V加上Q4的Vbe=0.6V),Q4导通,同时对Q2提供偏压,也是Q2导通。这样就使负载通过一个低阻抗与电源连接。至此,电源已被安全启动,软启动电路也已完成其功用。利用下列公式可以计算出Q1和Q2的导通时间:

在VC等于3 V的时候Q1导通,也就是说在电源的输出达到4.5 V以后,大约150 ms时导通;在VC等于7.4 V时Q2导通,即在Q1导通后的330 ms时导通。这样长的时间,足以保证电源需要的稳定时间和使Q1与Q2缓慢地导通。因为要把启动电流保持在一个最小值,所以FET(场效应管)的缓慢导通是至关重要的。若FET转换太快,有可能产生一个大的浪涌电流,失去软启动电路的效用。

注意事项

需要注意的是,为了对浪涌电流进行抑制而加装软启动电路,是需要付出代价的。从整体来讲,这种电路可看作是电源的一部分,它要消耗功率,使电源的效率降低。大部分功率损失是由于输出传递场效应管Q2的导通电阻不为零所造成的。这种IRFD9210的导通电阻为0.6 Ω。在500 mA输出电流时,Q2将消耗300 mW功率。如果不允许这样大的损耗,可以采用导通电阻更小的FET。

因为开关电源电压的感测是取自场效应管Q2的输入端,所以这种穿过Q2的电阻也影响负载电压的稳定。只要负载电流是相对恒定的,这个问题就并不严重。如果输出电压的变化较大,可以选用导通电阻低的FET来改善,也可以在软启动电路工作完成以后,在Q2的输出端加一个电压感测电路来改善。

结论

通过对电流浪涌的形成,以及软启动电路工作原理的讲解。本文介绍了利用软启动电路进行开关电源的浪涌电流消除。并且通过相关数据的讲解,证明了该软启动电路的控制能力较强。虽然文章当中所使用的例子为-48 V~+5 V的开关电源,但是其也能够适用于各种开关电源的浪涌电流抑制,关键在于大家充分理解文中的知识点,做到活学活用。

关键字:软启动  抑制开关  电源浪涌 编辑:探路者 引用地址:软启动抑制开关电源浪涌的原理及注意

上一篇:电镀用移相全桥软开关的电路讲解
下一篇:可变高压电源 光电耦合器来凑热闹

推荐阅读最新更新时间:2023-10-12 22:46

高频开关变换器中EMI产生的机理及其抑制方法
   1  前言   开关电源具有体积小、重量轻、效率高等特点,广泛用于通信、自动控制、家用电器、计算机等电子设备中。但是,其缺点是开关电源在高频条件下工作,产生非常强的电磁干扰(Electromagnetic Interference, EMI ),经传导和辐射会污染周围电磁环境,对电子设备造成影响。本文从开关电源的电路结构、器件进行分析,探讨了电磁干扰产生的机理及其抑制方法。   2 开关电源电磁干扰(EMI)产生的机理   开关电源的电磁干扰,按耦合途径来分,可分为传导干扰和辐射干扰。按噪声干扰源可分为两大类:一类是外部噪声,例如通过电网传输过来的共模和差模干扰、外部电磁辐射对开关电源控制电路的干扰等
[电源管理]
高频<font color='red'>开关</font>变换器中EMI产生的机理及其<font color='red'>抑制</font>方法
开关电源EMI整改频段干扰原因及抑制办法
开关电源EMI整改中,关于不同频段干扰原因及抑制办法: 1MHZ以内----以差模干扰为主 1.增大X电容量; 2.添加差模电感; 3.小功率电源可采用PI型滤波器处理(建议靠近变压器的电解电容可选用较大些)。 1MHZ---5MHZ---差模共模混合 采用输入端并联一系列X电容来滤除差摸干扰并分析出是哪种干扰超标并以解决, 1.对于差模干扰超标可调整X电容量,添加差模电感器,调差模电感量; 2.对于共模干扰超标可添加共模电感,选用合理的电感量来抑制; 3.也可改变整流二极管特性来处理一对快速二极管如FR107一对普通整流二极管1N4007。 5M---以上以共摸干扰为主
[电源管理]
浅谈开关电源中电磁干扰的产生及其抑制
  1、引言   电磁兼容EMC是英文electromagneticcompatibility的缩写。它包括两层含义,一是设备在工作中产生的电磁辐射必须限制在一定水平内,二是设备本身要有一定的抗干扰能力,它必须具备三个要素:干扰源、耦合通道、敏感体。给电子线路供电的开关电源对于干扰的抑制对保证电子系统的正常稳定运行具有重要意义。本文通过分析开关电源中的干扰源和耦合通道,提出了抑制干扰的有效措施。并提出了开关电源变压器的设计和制作方法。   2、开关电源中的干扰源和耦合通道   开关电源首先将工频交流电整流为直流电,然后经过开关管的控制变为高频,最后经过整流滤波电路输出,得到稳定的直流电压,因此,自身含有大量的谐波
[电源管理]
水泵软启动优点和缺点 水泵软启动和变频器启动的区别
  水泵软启动优点和缺点   水泵软启动优点:   1. 减轻启动冲击及噪音。水泵软启动会逐步提供启动电压,避免电动机启动时瞬间电流过大,降低了起动时冲击和噪音,保护了机械设备和电网的安全。   2. 降低故障率。采取水泵软启动器能够最大限度的延长设备的使用寿命,减少故障率。   3. 增长过程平滑。启动过程平滑,且逐渐提供电源,所以当电动机启动前需要准备的一些部分能够充分地准备。   4. 节省启动时能耗。水泵软启动器能够少消耗有较大容量的空气开关和电气元组,从而达到一定的节能效果。   水泵软启动缺点:   1. 价格相对较高。相较于其他启动方式,水泵软启动器的价格可能较高,不利于小型设备或不太有经费的环境。   2. 可
[嵌入式]
大功率开关电源中EMI干扰的抑制
  1 引言   随着开关电源应用领域的不断扩大,其电磁干扰已成为一个很严重的问题,为了使电源产品满足EMC的要求,设计人员就应在设计阶段考虑这一问题,同时也要做好在现场处理这一问题的准备。   2 开关电源EMI的特点与危害   开关电源的功率管工作在非线性条件下,采用脉宽调制(PWM)开关控制方式 ,加之开关频率的不断提高,使得电磁干扰越来越突出,对电网造成污染。           因干扰的存在,输入电源的电网受到了干扰,影响到其它设备,使其不能正常的工作,也影响到电网的供电质量。所以寻找干扰抑制的方法是很必要的。   3 大功率开关电源 中EMI抑制实验   在中科院近代物理
[电源管理]
大功率<font color='red'>开关</font><font color='red'>电源</font>中EMI干扰的<font color='red'>抑制</font>
基于模糊控制的三相异步电动机软启动研究
由于三相异步电动机直接起动过程中,瞬时电流冲击很大,可高达额定电流的5~7倍,且起动转矩冲击也很大,这些将对电动机本身、拖动设备及电源设备的使用寿命有很大的影响,同时也会对电网电压造成很大的冲击。传统的电动机软启动方式有星形一三角起动,自耦变压器起动,串联电抗器起动等。这些方法存在大的电流冲击,转速冲击和转矩冲击等弊端。而当将模糊控制运用到三相异步电动机软启动时,可以通过对启动电流进行控制,使启动过程中无瞬间冲击。三相异步电动机软启动过程作为非线性时变被控对象,反馈电流与晶闸管触发角之间没有精确的数学模型,采用模糊控制算法,可以使整个系统的抗误差能力增强。因此,本文介绍了一种基于模糊控制原理的三相异步电动机软启动控制系统。通过仿真实
[嵌入式]
软启动和变频启动的区别
  软启动器是一种集电机软启动、软泊车、负载环保节能和多种多样维护作用于一体的新奇电机操纵设备,海外称之为Soft Starter。它的关键组成是串连于开关电源与被测电机中间的三反过来串联闸管以及电子器件控制回路。   软启动器和变频器是二种彻底不一样主要用途的商品。变频器是用以需要变速的地区,其輸出不仅更改工作电压并且另外更改頻率;软启动器事实上是个交流稳压器,用以电机起动时,輸出只更改工作电压并沒有更改頻率。变频器具有全部软启动器作用,但它的价格对比软启动器贵得多,构造也繁杂得多。   软启动器和变频器的控制原理不同   软启动器其实是一种过度的控制装置,是介于星三角启动装置和变频器之间的工控产品,其功能比星三角启动装
[嵌入式]
软启动禁止低成本输出来遏制电流尖峰
为满足严格的待机功耗规范要求,一些多路输出电源被设计为在待机信号为活动状态时断开输出连接。 通常情况下,通过关闭串联旁路双极晶体管(BJT)或MOSFET即可实现上述目的。对于低电流输出,如果在设计电源变压器时充分考虑到晶体管的额外压降情况,则BJT可成为MOSFET的合适替代品,且成本更为低廉。 图十所示为简单的BJT串联旁路开关,电压为12 V,输出电流强度为100 mA,并带有一超大电容(CLOAD)。晶体管Q1为串联旁路元件,由Q2根据待机信号的状态来控制其开关。电阻R1的值是额定的,这样可确保Q1有足够的基值电流在最小Beta和最大的输出电流下以饱和的状态工作。PI建议额外添加一个电容器(Cnew),用以调节导通时的瞬态
[电源管理]
用<font color='red'>软启动</font>禁止低成本输出来遏制电流尖峰
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved