透彻分析:电压双象限Buck-Boost电路拓扑

最新更新时间:2014-10-23来源: 互联网关键字:电压双象限  Buck-Boost  电路拓扑 手机看文章 扫描二维码
随时随地手机看文章

在传统全桥的基础上长期使用单象限电路,这次来研究一款新电路,使设计的电源能更广泛应用在各领域中。下面引出双象限的概念,并详细介绍电压双象限Buck、Boost、Buck-Boost电路,对开关器件关断和开通分析。


在直流变换中不产生电能形式变化,只产生直流电参数的变化。DC/DC变换器具有成本低、重量轻、可靠性高、结构简单等特点,因此,在工业领域和实验室得到了广泛应用。单象限直流电压变换器电路的特点是输出电压平均值Uo跟随占空比D值而变,但不管D为何值,Uo的极性则始终不变,这对于直流开关稳压电源一类的应用场所是能够满足要求的。但对于直流调速电源,负载为直流电动机时,上述性能便不能满足要求,因而发展了多象限直流电压变换电路。

双象限电路分为输出电流平均值Io极性可变的电路与输出电压平均值Uo极性可变的电路两类,通常前一种电路称为电流双象限电路,后一种电路称为电压双象限电路。电流双象限电路是指输出电流平均值Io的幅值和极性均随控制信号us而变化,但输出电压平均值Uo的极性却始终为正,即电路可运行于第一和第二象限。电压双象限电路是指输出电压平均值Uo的幅值和极性均随控制信号us而变化,但输出电流平均值Io却始终为正,即电路可运行于第一和第四象限。本文将对电压双象限BuckBoost电路进行分析。Buck电路

(1)电路结构

主电路如图1所示。用电感、内阻和等效电压串联电路表示有源负载,桥的直流输入端并联滤波电容。这是一个全桥电路结构,桥的每臂用全控型器件(S1,S2)和不控型器件(D1,D2)组成。S1及S2的控制采用PWM控制,这样可以调节D值,并且及时检测负载的运行状况,由此控制开关的关断和开通。此电路的元器件、电源、负载均假设为理想的。输出滤波电感足够大,可保证负载电流连续,且线性升降。


(2)工作原理

运行于第一象限

这是指输出端电压平均值和电流平均值均为正的工作状态。(0≤t≤DT) S1及S2均导通,等效电路如图2(a)所示,输出电压Uo为Ud,输入电流等于输出电流,输出电流线性增长,负载从电源吸取能量。(DT≤t≤T) S1导通,S2断开,D1正偏续流,等效电路如图2(b)所示,由于S1与D1导通,Uo的值为零。输出电压平均值为 Uo=Dud。


运行于第四象限

这是指输出端电压平均值为负而电流平均值为正的工作状态。当电路负载为电动机且驱动位能性负载,如卷扬机的提升机构,当放下重物时,电机在重物作用下反转,电枢感应电势反向,电磁转矩成为制动转矩,为了保证安全,必须改变控制信号的极性和幅值,使电路工作于第四象限,将位能经过变换电路反馈到直流电源。具体工作过程如下。


(DT≤t≤T)S1及S2均断开,电感端电压反向,D1,D2正偏导通,等效电路如图3(a)所示,输出电压Uo为-Ud,负载反馈能量。(0≤t≤DT)S1断开,S2导通,负载电流由D2换到S2中。等效电路如图3(b)所示,Uo的值为零。输出电压平均值为 Uo=-Dud。由以上分析可知此电路及其控制策略可以实现双象限Buck电路功能。


Boost电路

(1)电路结构

主电路如图4所示。图中S1,S2,S3为全控型器件,D1及D2为不控型器件。负载依然为有源负载,直流输入端串联电感。S1,S2,S3的控制采用 PWM控制,此电路的元器件、电源、负载同样假设为理想的。输出滤波电感足够大,可保证负载电流连续,且线性升降。可以看出,本电路的设计思想也是利用全桥实现双象限运行,其好处在于简单、可靠。


(2)工作原理

运行于第一象限

(DT≤t≤T)S1断开,S2及S3均导通,等效电路如图5(a)所示,电感电压UL=Ud-Uo。0≤t≤DT)S1,S2,S3均导通,等效电路如图5(b)所示,电感电压UL=Ud。输出电压平均值为Uo=Ud/(1-D)。


运行于第四象限

(DT≤t≤T) S1,S2,S3均断开,电感端电压反向,D1及D2正偏导通,等效电路如图6(a)所示,电感电压UL=Ud+Uo。(0≤t≤DT) S1导通,S2及S3均断开,等效电路如图6(b)所示,电感电压UL=Ud。输出电压平均值为 Uo=-Ud/(1-D)。Buck-Boost电路

(1)电路结构

主电路如图7所示。图中S0,S1,S2,S3,S4为全控型器件。负载依然为有源负载,直流输入端并联电感Lo。所有开关均采用PWM控制,此电路的元器件、电源、负载同样假设为理想的。输出滤波电感足够大,可保证负载电流连续,且线性升降。此电路与双象限Boost电路不同之处是主开关与电感相互交换位置。也是利用单象限BuckBoost电路的主电路衍生出来的,并利用全桥全控电路实现双象限功能。改变占空比D可以实现升压或降压功能。


(2)工作原理

运行于第一象限

(0≤t≤DT) S0,S1,S2均导通,S3及S4断开,等效电路如图8(a)所示,电感电压UL=Ud。(DT≤t≤T) S0,S1及S3断开,S2及S4导通,等效电路如图8(b)所示,电感电压UL=-Uo。

运行于第四象限

(DT≤t≤T) S0,S2,S4断开,S1及S3导通,电感端电压反向,等效电路如图9(a)所示,电感电压UL=Uo。(0≤t≤DT)S0,S3,S4导通,S1及S2断开,等效电路如图9(b)所示,电感电压UL=Ud。输出电压平均值为Uo=-DUd/(1-D)。


4、总结

本文在传统单象限Buck、Boost、Buck-Boost电路的基础上不断摸索与研发,最终衍生了双象限的Buck、Boost、Buck-Boost电路,基于双象限特性分析了每一步的工作过程,具体现象有着直接话语权,为双象限电路及直流变换电路的进一步完善提供了新思路。

关键字:电压双象限  Buck-Boost  电路拓扑 编辑:探路者 引用地址:透彻分析:电压双象限Buck-Boost电路拓扑

上一篇:LDO和DC-DC变换器的区别在哪?
下一篇:反激电源及变压器的最大占空比实现

推荐阅读最新更新时间:2023-10-12 22:47

新型AC LED变换器拓扑电路设计
传统的LED 灯恒流控制是通过AC/DC,再通过DC/DC变换器进行恒流控制,在AC/DC 变换器中,通常在整流电路后面用滤波电容使输出的电压平滑,但是大电容的存在造成交流端的输入电流波形变成尖脉冲,而不再是正弦函数(降低功率因数)。基于以上LED 控制存在的缺陷,本文采用ACLED 变换器控制。DC LED 变换器中由于输入功率为脉动的,输出功率为恒定的,需要中间储能电容来平衡两者的差值,因此,储能电容一般值较大,并采用电解电容,但数值高的电解电容寿命远小于LED 的寿命,导致整体变换器的寿命降低。 如果采用AC LED,输入和输出功率都是脉动的,则需要的储能电容值较小,会提高整体变换器的寿命。现有AC LED 灯电路结构有串联
[电源管理]
新型AC LED变换器<font color='red'>拓扑</font><font color='red'>电路</font>设计
交错叠加型准方波抵消纹波的变换拓扑结构电路
交错叠加型准方波抵消纹波的变换拓扑结构电路图
[电源管理]
交错叠加型准方波抵消纹波的变换<font color='red'>拓扑</font>结构<font color='red'>电路</font>图
Buck-Boost开关转换器的传递函数
  电压型控制的Buck-Boost开关电源系统的开环输出电压(即开关转换器的输出)为:          Le,C,R,为Buck-Boost开关转换器小信号等效电路模型的输出滤波器参数。   由式(13-50)可知,当ui=0时,Buck-Boost开关转换器的控制一输出传递函数为:   由式(13-51)可知,Buck-Boost转换器的控制一输出传递函数有一个右半平面(RhHP)零点1/TL,两个左半平面(RHP)极点。RHP零点是Buck-Boost转换器的小信号等效电路模型所固有的(占空比控制的受控电压源含有1-sTs),是由Boost族电路特点所决定的。   从控制一输出传递函数中是否包含RHP零
[电源管理]
<font color='red'>Buck-Boost</font>开关转换器的传递函数
电流连续时Buck-Boost升降压式PWM DC/DC转换器的基本关系
  稳态工作时,在开关管V导通期间电感电流iLf的增加量△iLf(+)等于它在开关管V关断期间的减小量△iLf(-)则由式(3-70)和式(3-72)可以得到:   从式(3-73)可以看出,当占空比Du=0.5时,Uo=Ui;当Du 0.5时,Uo Ui;当Du>0.5时,Uo>Ui。所以,Buck-Boost升降压式PWM DC/DC转换器的输出电压Ui,既可以低于输入电压Ui,也可以高于输入电压Ui。   假定此转换器没有损耗,则有   在开关管V关断时,加在其上面的电压Uv为:   在开关管V导通时,加在二极管D上的电压Uu为:   所以Buck-Boost转换器中功率器件上的电压高于B
[电源管理]
电流连续时<font color='red'>Buck-Boost</font>升降压式PWM DC/DC转换器的基本关系
三相PFC矩阵变换器电路拓扑及工作原理
图1示出三相PFC矩阵变换器电路拓扑。该矩阵变换器的开关是由两个背靠背的IGBT组成的。这样组成的开关可对正负两个方向的电压和正反两个方向的电流进行导通和截止,因此该开关具有四象限功能 。每个H桥的对角线上两个双向开关互补通断,就可将等伏秒面积的双极性电压脉冲通过高频变压器传递给次级输出。每一开关的导通宽度均由模拟调压板通过对交流电压前馈uphase、输出电压反馈uout及初级电流取样值ipri作为输入,再由模拟调压板中的PFC专用芯片UC3854BN运算得到。CPLD板综合DSP板,模拟调压板的输入,发出6路脉宽调制波驱动6只双向开关VQ1~VQ6。图2示出控制系统框图。
[模拟电子]
三相PFC矩阵变换器<font color='red'>电路</font><font color='red'>拓扑</font>及工作原理
分析Boost和Buck-Boost拓扑结构的LED驱动
  LED光源生产商和设计者经常会提到固态发光的应用,最明显的优势就像是“树上挂得很低的水果”。例如花园路径照明或者MR16杯灯常常只需要一些甚至只要一个LED。 对于低压应用来说,最通用的电压是12VDC、24VDC和12VAC,这些应用常常要用到一个Bulk调节器。虽然如前所述,Bulk是首选,但是在LED照明应用中,随着LED数量的增加,Boost调节器也得到了越来越多的应用。设计者们不再满足于手电筒或者单个杯灯应用,而把目光投到大尺寸通用照明和达到几千流明的照明系统。例如街灯、公寓和商业照明、体育场照明和建筑内外装饰照明。  仍然需要常电流   如同线性和Buck衍生LED驱动一样,Boost LED驱动设计中
[电源管理]
分析Boost和<font color='red'>Buck-Boost</font>等<font color='red'>拓扑</font>结构的LED驱动
电压象限Buck-Boost电路拓扑及分析
摘要:在传统全桥电路的基础上利用单象限电路研究新的电路,达到拓宽现有电路拓扑应用领域的目的。介绍了电压双象限Buck,Boost,Buck/Boost电路以及对他们的开关器件关断和开通的分析。 关键词:变换器;拓扑;双象限;电压控制 引言 在直流变换中不产生电能形式变化,只产生直流电参数的变化。DC/DC变换器具有成本低、重量轻、可靠性高、结构简单等特点,因此,在工业领域和实验室得到了广泛应用。单象限直流电压变换器电路的特点是输出电压平均值Uo跟随占空比D值而变,但不管D为何值,Uo的极性则始终不变,这对于直流开关稳压电源一类的应用场所是能够满足要求的。但对于直流调速电源,负载为直流电动机时,上述性能便不能满足要求,因而发
[应用]
无源无损缓冲电路及其新拓扑
摘要:在分析无源无损缓冲电路的拓扑分类和硬开关转换过程中开关损耗的基础上,总结了无源无损缓冲电路的结构原理和一般实现方法。重点介绍了其在DC/DC变换器中两种新颖的拓扑结构,并简要地分析了它们的工作原理和优缺点。 关键词:无源无损缓冲电路;DC/DC变换器;功率因数校正     1 概述 在硬开关电路中,有源开关器件连接在刚性的电压源或电流源上,开关损耗大、电磁干扰严重、可靠性低,且随着开关频率的提高,这种现象更为严重。为了克服这些缺陷,软开关技术被广泛采用。 有源缓冲电路、RCD缓冲电路、谐振变换器、无源无损缓冲电路是常用的软开关技术。其中,有源缓冲电路通过增添辅助开关以减少开关损耗,但这
[电源管理]
无源无损缓冲<font color='red'>电路</font>及其新<font color='red'>拓扑</font>
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved