LED电源减少输出纹波的五大法宝

最新更新时间:2014-11-14来源: 互联网关键字:LED  电源 手机看文章 扫描二维码
随时随地手机看文章

LED设计中,对于纹波,理论上和实际上都是一定存在的。通常抑制或减少它的做法有五种:

  加大电感和输出电容滤波

  根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

  输出纹波与输出电容的关系:vripple=Imax/(Co×f)。可以看出,加大输出电容值可以减小纹波。

  通常的做法,对于输出电容,使用铝电解电容以达到大容量的目的。但是电解电容在抑制高频噪声方面效果不是很好,而且ESR也比较大,所以会在它旁边并联一个陶瓷电容,来弥补铝电解电容的不足。

  同时,LED驱动电源工作时,输入端的电压Vin不变,但是电流是随开关变化的。这时输入电源不会很好地提供电流,通常在靠近电流输入端(以BucK型为例,是SWITcH附近),并联电容来提供电流。

  二级滤波,就是再加一级LC滤波器

  LC滤波器对噪纹波的抑制作用比较明显,根据要除去的纹波频率选择合适的电感电容构成滤波电路,一般能够很好的减小纹波。但是,这种情况下需要考虑反馈比较电压的采样点。

  采样点选在LC滤波器之前(Pa),输出电压会降低。因为任何电感都有一个直流电阻,当有电流输出时,在电感上会有压降产生,导致电源的输出电压降低。而且这个压降是随输出电流变化的。

  LED驱动电源输出之后,接LDO滤波

  这是减少纹波和噪声最有效的办法,输出电压恒定,不需要改变原有的反馈系统,但也是成本最高,功耗最高的办法。任何一款LDO都有一项指标:噪音抑制比。

  经过LDO之后,纹波一般在10mV以下。

  在二极管上并电容C或RC

  二极管高速导通截止时,要考虑寄生参数。在二极管反向恢复期间,等效电感和等效电容成为一个RC振荡器,产生高频振荡。为了抑制这种高频振荡,需在二极管两端并联电容C或RC缓冲网络。电阻一般取10Ω-100Ω,电容取4.7pf-2.2nf。

  在二极管上并联的电容C或者RC,其取值要经过反复试验才能确定。如果选用不当,反而会造成更严重的振荡。

  二极管后接电感(EMI滤波)

  这也是常用的抑制高频噪声的方法。针对产生噪声的频率,选择合适的电感元件,同样能够有效地抑制噪声。需要注意的是,电感的额定电流要满足实际的要求。

  小结

  以上是关于LED设计中,减小输出纹波的一些常用办法,虽然可能不太全,但对一般的应用已经足够了。关于噪声抑制,实际中并不一定全部应用,重要的是根据自己的设计要求,比如产品体积,成本,开发周期等,选择合适的方法。

关键字:LED  电源 编辑:探路者 引用地址:LED电源减少输出纹波的五大法宝

上一篇:电源的寿命谁来决定
下一篇:深度解析:LED到底怎么调光?

推荐阅读最新更新时间:2023-10-12 22:48

解析LED照明的驱动电源的问题
  为了节能省电, LED 得到了很大的推广,但LED都需要有个电源驱动,其好坏会直接影响LED的寿命,因此如何做好一个LED驱动电源是 LED电源 设计者的重中之重。本文介绍了一些LED驱动电源的问题,希望能够对工程师提供一点帮助。   1、驱动电路直接影响LED寿命   我们所说的 LED驱动 包括数字驱动和模拟驱动两类,数字驱动指数字电路驱动,包括数字调光控制,RGB全彩变幻等。模拟驱动指模拟电路驱动,包括AC恒流开关电源,DC恒流控制电路。驱动电路由电子元件组成,包括半导体元件,电阻,电容,电感等,这些元件都有使用寿命,任何一个器件失效都会导致整个电路的失效或者部分功能失效。 LED的使用寿命是5-10万小时,按5万小
[电源管理]
全新无银高亮度红色LED,大幅度的提高了汽车灯具使用
LED在车载领域的应用越来越广泛。但是,汽车尾气、香烟的烟气、密封橡胶排气等气体与LED内部广泛使用的银会发生硫化反应,导致LED光通量严重下降、色温明显漂移,甚至出现死灯现象。当汽车的刹车灯、方向灯、尾灯等出现LED硫化现象时,将直接影响汽车的行驶安全。 如何让汽车上的LED适应越来越严苛的环境?近日全球知名半导体制造商ROHM发布了业界首款完全无银的高亮度红色LED“SML-Y18U2T”,大幅度的提高了汽车灯具尤其是刹车灯在严酷环境下使用的可靠性。 ROHM光学模块生产本部LED制造部商品企划组组长吉田晃久、 罗姆 半导体(上海)有限公司设计中心副所长水原德健日前举行记者见面会,描述了ROHM的这一超强产品以及ROHM在LE
[汽车电子]
一种MID电源管理解决方案
       MID(mobile Internet Devices)是一种结合行动电话、数字相机与平板计算机的行动上网装置。AME的LDO、Step-Down DC/DC Converter可提供稳定的电源与高转换效率,并具有OCP、OTP保护设计,提高产品的稳定性与效能,让使用者能体验MID行动上网带来的便利与影音享受。   AME5251 Dual High-Efficiency Synchronous Step-Down DC-DC Converter   安茂微(AME)的AME5251,提供DFN-12A(3mm x 3mm x 0.75mm)包装,能同时提供2组电源与同时输出1A电流,可增加PCB Board
[电源管理]
一种MID<font color='red'>电源</font>管理解决方案
高压电源
高压电源 该电路用一个晶体管振荡器和一个倍压器将C10和C11充至高电压,当放电器被击穿时,T2通过电容C10和C11向初级线圈放电产生高压脉冲,T2是一个自动点火线圈。
[电源管理]
高压<font color='red'>电源</font>
用简化方法对高可用性系统中的电源进行数字化管理
高端服务器、电信和网络设备利用电源管理控制器测量、跟踪和控制每块板卡上的不同电源,并报告测量、跟踪和控制信息,这被称为“以数字方式管理电源”。高可用性电源的数字管理大有前途,但是这种数字管理常常是以采用高成本的复杂多芯片电路解决方案为代价的。例如,一个具有电压-电流监视和电源裕度控制能力的应用可能需要很多芯片,如低漂移基准、分辨率至少为 12 位的多通道差分输入 ADC、8 位 DAC 和专用微控制器。此外,实现裕度控制算法、电压和电流监视器功能还需要相当多的软件开发工作。再加上成本、复杂性、线路板空间要求和设计调试时间,即使是最专业的电源设计人员也可能不敢尝试以数字方式管理电源。 LTC 2970 双路 I2C电源监视器和裕
[电源管理]
用简化方法对高可用性系统中的<font color='red'>电源</font>进行数字化管理
胡为东系列文章之六--小电压电源噪声的测量
一、影响电源噪声测试结果的主要因素 影响电源噪声测试结果的主要因素有:在电源噪声测试中,通常有如下几个问题导致测量不准确: l 是否需要增加20MHZ的滤波 l 示波器的量化误差 l 使用衰减因子大的探头测量小电压 l 探头的GND和信号两个探测点的距离过大 1、是否需要增加20MHZ的滤波 过去我们在进行电源纹波测试过程中,由于电源导致的噪声频率通常比较低,因此通常默认需要加20MHZ的滤波,目的是滤除高于20MHZ以上的噪声,来验证主要由于电源因素引起的噪声大小。但是在实际情况下,往往还需要验证在所有频段上电源上的噪声情况如何,因此我们需要提前弄清楚是否需要增加2
[测试测量]
胡为东系列文章之六--小电压<font color='red'>电源</font>噪声的测量
基于CAN 总线的电动汽车电源管理通信系统设计
  摘 要:电动汽车的电源管理方案,涉及到了发动机、电动机、蓄电池的工作状况、车辆行驶速度、行驶阻力以及驾驶员的操作等诸多参数,利用CAN总线技术,把以上参数的测控装置连接起来,是实现电动汽车的电源管理的关键步骤,本文主要论述了基于CAN 总线的电动汽车电源管理中的通信系统设计与实现技术。 关键词:电动汽车;电源管理; CAN 总线;通信技术 随着石油价格的上涨以及环保要求的提高,电动已经成为是未来汽车发展的一个重要方向。对于以电池供电的全电动力系统或者以发动机和蓄电池混合动力系统而言,电源管理系统设计是关系车辆性能的一个重要因素,设计时需要考虑综合车辆总体设计方案和外部使用环境,为了节约电源,还需要设计一定的控制策略保证电源的最
[电源管理]
基于CAN 总线的电动汽车<font color='red'>电源</font>管理通信系统设计
电源中安规电容的重要性
不知道大家有没有过这样的经历:小时候很好奇,什么东西都想碰,去摸插座电源,结果被电到了?小编小时候就做过这样的事情,因为年纪小无知还好奇,被电到了和家长说反而还挨骂。看到这几年触摸插板结果触电而亡的新闻就觉得很揪心。现在想想就小编这个好奇心能活到现在真的不容易,还让父母担心。 电源里有不同的电子元件,打开开关电源可以看到里面有个黄色盒型电子元件和蓝色圆形电子元件,这两个电子元件就是安规电容,黄色盒型的是安规X电容,蓝色圆形的是安规Y电容。那么它们在开关电源里是做什么用的呢?那么我们先来搞清楚什么是安规电容。 安规电容是指外部电源断开后会迅速放电,人触摸不会有触电感,而且安规电容失效后,不会导致电击,不会伤害人体。而普通电容
[嵌入式]
论<font color='red'>电源</font>中安规电容的重要性
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved