介绍一种通用性较强、成本低廉的便携式电源系统设计与制作,系统具有两种供电模式,可采用外接电源供电,也可由内置锂电池供电,系统最终输出电压均为 3V,两者同时存在时,优先选择外接电源供电。具有两种外接电源接口,电源适配器和USB 接口,两者同时使用时,电源适配器具有优先权。本系统可广泛应用于各种便携式设备,有较强的实用性和较好的市场前景。
输入选择电路模块
输入选择电路用以实现对外接供电电源的选择,本设计中采用目前主流的USB 供电以及电源适配器供电两种方式,以适应不同的供电环境,外接电源的供电电压需在4.5V~6V 之间,当两者共同存在时,适配器具有优先权,具体实现方法如图3,分以下三种情况:
图3 输入选择电路
●只有电源适配器供电,PMOS 管截止,输入电压经D1 降压后,给后级电路供电,D1 采用肖特基二极管,导通压降约为0.3V ;
●只有USB 供电,PMOS 管导通,D1 用于防止USB 接口通过电阻R2 消耗电能;
●两者同时存在,PMOS 管截止,电源适配器输入电压经D1 降压后,给后级电路供电。
锂电池充电管理电路模块
锂电池充电电路采用CN3052 锂电池充电芯片,CN3052 可以对单节锂电池进行恒流或恒压充电,只需要极少的外围元器件,可编程设定充电电流,恒压充电电压为4.2V。并且符合USB 总线技术规范,非常适合于便携式应用的领域。应用电路如图4只需要很少的外部元件,输出电压4.2V,精度可达1% ,CE 为芯片使能端,高电平有效。绿色LED 用于指示电池是否处于故障状态,红色LED用于指示是否处于充电状态。本设计中TEMP 管脚接到地,未使用温度检测功能。R4 用于设定恒流充电电流。设计中R4 为10KΩ,充电电流为180mA。
图4 锂电池充电管理电路
电池输出稳压电路模块
因锂电池电量不同时,输出电压可在大约3.5~4.3V之间变动,采用低压差线性稳压器(LDO)对电池输出电压进行稳压,经稳压后输出恒定的3.3V 电压,本设计采用TPS76333 稳压芯片,只需极少的外围元件,使用方便,此稳压芯片最大可输出150mA 电流。电路图如图5所示。
图5 电池稳压电路
外接电源稳压电路模块
因电池供电时,经LDO 电路稳压后,输出电流有限,当有外接电源时,稳压方式采用SPX1117-3.3V 稳压器进行稳压,输出电流可达800mA。交流电经过整流可以变成直流电,但是它的电压是不稳定的:供电电压的变化或用电电流的变化,都能引起电源电压的波动。要获得稳定不变的直流电源,还必须再增加稳压电路。电路图如图6 所示。
图6 外接电源稳压电路
系统整体电路模块
系统整体电路如图 所示。由输入选择电路选择外接电源的供电方式,电源输入的电压值为4.5~6 伏,有外接电源时,直接经3.3V 稳压器稳压后输出,如果电池电量不足时,同时通过锂电池充电电路对锂电池进行充电;没有外接电源时,由锂电池供电,经3.3V低压差线性稳压器稳压后输出,供电选择电路根据是否有外接电源,选择由外接电源供电或者锂电池供电。
图8 整体电路
系统介绍一种通用性较强、成本低廉的便携式电源系统,讨论分析电源电路的结构、设计和具体实现,使用外部可编程电路对所设计电路进行控制,并利用软件进行电路设计和仿真验证。采用外接电源供电,也可由内置锂电池供电,系统最终输出电压均为 3V,系统可广泛应用于各种便携式设备,有较强的实用性和较好的市场前景。
关键字:便携式 设备充电 电源电路设计
编辑:探路者 引用地址:便携式设备充电电源电路设计
推荐阅读最新更新时间:2023-10-12 22:51
适用于单节或两节电池供电的便携式应用的完整电池组设计
引言 尽管电压测量已经单独被用于许多便携式产品估算电池的剩余电量,但是这种方法可能存在高达 50% 的误差。电池电压和电量之间的关系会随放电率、温度和电池老化程度而有所不同。例如,相比相同电量损耗的低放电率,高放电率会带来更大的压降。当电池在不同温度下放电时,我们会注意到一些类似的特征。 随着对长运行时间产品的需求不断增长,系统设计人员需要一款更为精确的解决方案。在一个宽范围的应用功率级中, 使用电池电量监测计 IC 来测量流入或流出电池的电荷,将得到一种更好的电池电量估算方法。 电池电量监测计原理 电池电量监测计就是一种自动监控电池电量的 IC,其向做出系统电源管理决定的处理器
[电源管理]
德州仪器针对便携式电子推出业界最小线性LED 驱动器
基于 LDO 的采用 1.2 毫米 × 1.2 毫米芯片级封装的双组 LED 驱动器
为实现 LED 照明创新设计开启成功之门
2006 年 12 月 8 日,北京讯
日前,德州仪器 (TI) 宣布推出业界最小双组低压降 (LDO) 稳压器,以支持多种便携式应用中的发光二极管 (LED) 照明,其中包括移动电话、导航系统、MP3 以及媒体播放器等。该款支持高质量彩色背景照明的器件采用 1.2 毫米 × 1.2 毫米微小型封装,可使最终用户体验到彩色键区与导航台 (navigation pad) 背景灯的亮度与明暗变化。(更多详情,敬请访问: www.ti.com/sc06233 。)
[新品]
科幻技术之全息触摸界面
微软便携式互动技术OmniTouch让任意表面成为触摸屏,充满了科幻色彩的技术。
据国外媒体报道,科幻电影和电视节目显示,在PC上使用“全息”触摸界面的人可能比以前想象的更能接近现实。微软官方网站公布将推出两种不同的“全息”触摸屏。其中一款被称为OmniTouch,几乎能使任何类型的表面作为用户界面使用。
微软工程师Hrvoje Benko表示:“仅一只手的表面积就能超过典型的智能手机,桌面是一个数量级,比平板电脑大。如果我们能以点播的方式来占用这些特设的表面,我们将可以提供移动性的益处,同时扩大用户的交互能力。”
图
图
OmniTouch原型使用Prime
[嵌入式]
解析高端成像和便携式诊断系统的技术需求
本文将只专注于两个方面: 高端成像 系统和便携式 诊断系统 。这两种类型的应用都具有相似的需求,即能够提供高性能和高精度的组件。
以上提到的系统需要准确的测量,精确的数据处理和高度复杂的数字处理,特别是输出形式为图像或视频的情况。这些技术也转移到了其他领域,比如军事/航天和运输。
硅设计的进步意味着关键性半导体的精密程度已经极大提高,特别是 DSP , FPGA ,微控制器和高性能 模拟 器件。同样的,由于这些应用中加入了触摸屏和更加精密的人机界面,所以成像科技正在融入越来越多的传统半导体领域。
处理
许多器械和医疗系统使用视频和图像输出,以方便诊断,因此会大量应用信号处理技术。
[医疗电子]
基于ATmega16的便携式机车信号发生器的设计研究
内容摘要:便携式机车速度信号发生器能够模拟机车运行参数,准确输出速度变化信号,便于检修工作人员及时排查故障点,提高检修效率。该设备采用手持式结构,主集成了脉冲形成模块、功率放大模块、故障诊断、信息显示及输入输出等功能模块,形成一套完善的系统,能够独立,精确模拟机车速度信号,并能方便,有效,可靠的检测出机车速度信号相关的线路状况,本文详细叙述了该信号发生器的研发方案、系统构成和主要功能特点,并介绍了其现场使用情况。 机车速度检测系统是关系机车可靠控制和机车安全运行的重要环节,直接影响机车运行的安全正点。目前周内铁路主要干线机车机车的过渡装置、监控装置、防空转系统、车载轴承检测装置所需的机车速度信号,是由安装在机车轮对车轴上的
[单片机]
模拟技术简化便携式应用中的LED亮度调节
使用LED型固态照明(SSL)的便携式设备要求使用高效驱动电路来延长电池使用时间,同时还要求使用一些亮度调节方法来对光线输出进行调节,以适应周围的照明环境。在诸如智能手机或者便携式GPS导航系统背光照明等应用中,必须使用LED亮度调节,目的是让用户在强太阳光和夜晚弱光条件下都能看清楚屏幕。使用手电筒时,用户认为较长的电池使用时间更加重要,而非提供最强的光线照明。我们可以在这些应用中使用模拟亮度调节或者脉宽调制(PWM)亮度调节方法。模拟设计通过使用一种创新方法来建立起一个参考电压,从而获得比PWM型设计更高的效率。
模拟和PWM亮度调节方法都对LED驱动电流进行控制,而该电流同光线输出成正比关系。模拟亮度调节结构简单,控制功
[电源管理]
基于0MAP的便携式红外热像仪设计
红外热像仪是利用红外探测器、光学成像物镜和光机扫描系统(目前先进的焦平面技术省去了光机扫描系统)接收被测目标的红外辐射能量分布图形反映到红外探测器的光敏元上,在光学系统和红外探测器之间,有一个光机扫描机构(焦平面热像仪无此机构)对被测物体的红外热像进行扫描,并聚焦在单元或分光探测器上。由探测器将红外辐射能转换成电信号,经放大处理、转换为标准视频信号,通过电视屏或监视器显示红外热像图。这种热像图与物体表面的热分布场相对应。除显示红外热辐射图像,红外热像仪还能提供精确的非接触温度测量功能。
从带有扫描装置的第一代热像仪到焦平面阵列式结构的凝成像红外热像仪,红外热像仪已从笨重、操作复杂发展成为轻巧、操作方便简洁的便携式手
[嵌入式]
SoC微处理器推动便携式医疗设备创新发展
便携式医疗设备正不断改进数以百万计患者的医疗保健条件。诸如血糖监测仪、心率检测仪、可吞咽胃肠 (GI) 道检测仪以及止痛植入物等众多设备都在不断提升慢性或急性疾病患者的生活质量。便携式自动除颤器可以挽救急病患者的生命。运动手表不仅能够无线记录用户的心率、测量距离、进行脚步计数,而且还可实现能最大限度发挥有氧训练优势的其它功能。未来几年中,还将继续推出众多能显著改善医疗实施及其效果的创新型医疗应用产品。
实际上,所有这些便携式产品都需要采用低功耗微处理器 (MCU) 来接收用户或操作员的指令,并提供读数与状态更新。由于几乎所有此类产品都依靠电池运行,因而不断延长电池使用寿命成为需要重点考虑的事项。尽管这些产品在电池使用
[医疗电子]