PLL的电源管理设计

最新更新时间:2015-01-20来源: 互联网关键字:电源 手机看文章 扫描二维码
随时随地手机看文章
摘要

锁相环(PLL)是现代通信系统的基本构建模块PLLs通常用在无线电接收机或发射机中,主要提供“本振”(LO)功能;也可用于时钟信号分配和降噪,而且越来越多地用作高采样速率模数或 数模转换的时钟源。由于每一代PLL的噪声性能都在改善,因此电源噪声的影响变得越来越明显,某些情况下甚至可限制噪声性能。本文讨论图1所示的基本PLL方案,并考察每个构建模块的电源管理要求。

 

图1.显示各种电源管理要求的基本锁相环

PLL中,反馈控制环路驱动电压控制振荡器(VCO),使振荡器频率(或相位)精确跟踪所施加基准频率的倍数。许多优秀的参考文献 解释了PLL的数学分析;ADI的ADIsimPLL™等仿真工具则对了解环路传递函数和计算很有帮助。下面让我们依次考察一下PLL构建模块。

VCO和VCO推压

电压控制振荡器将来自鉴相器的误差电压转换成输出频率。器件“增益”定义为KVCO,通常以MHz/V表示。电压控制可变电容二极管(变容二极管) 常用于调节VCO内的频率。VCO的增益通常足以提供充分的频率覆盖范围,但仍不足以降低相位噪声,因为任何变容二极管噪声都会被放大KVCO倍,进而增加输出相位噪声。

多频段集成VCO的出现,例如用于频率合成器ADF4350的集成VCO,可避免在KVCO与频率覆盖范围间进行取舍,使PLL设计人员可以使用包含数个中等增益VCO的IC以及智能频段切换程序,根据已编程的输出频率选择适当的频段。这种频段分割提供了宽广的总体范围和较低噪声。

除了需要从输入电压变化转换至输出频率变化(KVCO)外,电源波动也会给输出频率变化带来干扰成分。VCO对电源波动的灵敏度定义为VCO 推压(Kpushing),通常是所需KVCO.的一小部分。例如,Kpushing通常是KVCO的5%至20%。因此,对于高增益VCO,推压效应增大,VCO电源的噪声贡献就更加举足轻重。

VCO推压的测量方法如下:向VTUNE引脚施加直流调谐电压,改变电源电压并测量频率变化。推压系数是频率变化与电压变化之比,如表1所示,使用的是ADF4350 PLL。

表1. ADF4350 VCO推压测

VCO 
频段 
(MHz)

Vtune
(V)

f1 (MHz) at VVCO= 3 V

f2 (MHz) at VVCO= 3.3 V

KpushingΔf/ΔV(MHz/V)

2200

2.5

2233.446

2233.061

1.28

3300

2.5

3331.112

3331.799

2.3

4400

2.5

4462.577

4464.242

5.55

 

参考文献2中提到了另一种方法:将低频方波直流耦合至电源内,同时观察VCO频谱任一侧上的频移键控 (FSK)调制峰值(图2)。峰值间频率偏差除以方波幅度,便得出VCO推压系数。该测量方法比静态直流测试更精确,因为消除了与直流输入电压变化相关的任何热效应。图2显示 ADF4350 VCO输出在3.3 GHz、对标称3.3 V电源施加10 kHz、0.6 V p-p方波时的频谱分析仪曲线图。对于1.62 MHz/0.6 V或2.7 MHz/V的推压系数,最终偏差为3326.51 MHz – 3324.89 MHz = 1.62 MHz。该结果可与表1中的静态测量 2.3 MHz/V比较。

 

图2.ADF4350 VCO通过10kHz、0.6v p-p方波响应

电源调制的频谱分析仪曲线图

在PLL系统中,较高的VCO推压意味着VCO电源噪声的增加倍数更大。为尽可能降低对VCO相位噪声的影响,需要低噪声电源。

参考文献3和参考文献4提供了不同低压差调节器(LDO)如何影响PLL相位噪声的示例。例如,文献中对ADP3334和ADP150 LDO为ADF4350供电时的性能进行了比较。ADP3334调节器的集成均方根噪声为27 μV(40多年来,从10 Hz至100 kHz)。该 结果可与ADF4350评估板上使用的LDO ADP150的9 μV比较。图3中可以看出已测量PLL相位噪声频谱密度的差异。测量使 用4.4 GHz VCO频率进行,其中VCO推压为最大值(表1),因此属于最差情况结果。ADP150调节器噪声足够低,因此对 VCO噪声的贡献可以忽略不计,使用两节(假定“无噪声”)AA电池重复测量可确认这一点。

 

图3.使用ADP3334和ADP150LDO对(AA电池)供电时ADF4350在4.4GHz下的相位噪声比较

图3强调了低噪声电源对于ADF4350的重要性,但对电源或 LDO的噪声该如何要求呢?

与VCO噪声类似,LDO的相位噪声贡献可以看成加性成分LDO(t), 如图4所示。再次使用VCO超额相位表达式得到:

 

或者在频域中为:

 

其中vLDO(f)是LDO的电压噪声频谱密度。

1 Hz带宽内的单边带电源频谱密度SΦ(f)由下式得出:

 

以dB表示时,用于计算电源噪声引起的相位噪声贡献的公式如下:

 

 

(1)

其中 L(LDO)是失调为f时,调节器对VCO相位噪声(以dBc/Hz表示)的噪声贡献; f; Kpushing是VCO推压系数,以Hz/V表示;vLDO(f)是给定频率偏移下的噪声频谱密度,以V/√Hz表示.

 

图4.小信号加性vco电源噪声模型

在自由模式VCO中,总噪声为 LLDO值加VCO噪声。以dB表示则为:

 

例如,试考虑推压系数为10 MHz/V、在100 kHz偏移下测得相位噪声为–116 dBc/Hz的VCO:要在100 kHz下不降低VCO噪声性能,所需的电源噪声频谱密度是多少?电源噪声和VCO噪声作为方和根添加,因此电源噪声应比VCO噪声至少低6 dB,以便将噪声贡献降至最低。所以LLDO应小于–122 dBc/Hz。使用公式1,

 

求解vLDO(f),

在100 kHz偏移下,vLDO(f) = 11.2 nV/√

给定偏移下的LDO噪声频谱密度通常可通过LDO数据手册的 典型性能曲线读取。

当VCO连接在负反馈PLL内时,LDO噪声以类似于VCO噪声的方式通过PLL环路滤波器进行高通滤波。因此,上述公式仅适用于大于PLL环路带宽的频率偏移。在PLL环路带宽内,PLL可成功跟踪并滤 LDO噪声,从而降低其噪声贡献。

LDO滤波

要改善LDO噪声,通常有两种选择:使用具有更少噪声的LDO,或者对LDO输出进行后置滤波。当无滤波器的噪声要求超过经济型LDO的能力时,滤波选项可能是不错的选择。简单的LC π 滤波器通常足以将带外LDO噪声降低20 dB(图5)。

 

图5.用于衰减LDO噪声的LCπ滤波器

选择器件时需要非常小心。典型电感为微亨利范围内(使用铁氧体磁芯),因此需要考虑电感数据手册中指定的饱和电流(ISAT), 作为电感下降10%时的直流电平。VCO消耗的电流应小于ISAT. 有效串联电阻(ESR) 也是一个问题,因为它会造成滤波器两端的IR压降。对于消耗300 mA直流电流的微波VCO,需要ESR小于0.33 ?的电感,以产生小于100 mV的IR压降。较低的非零ESR还可抑制滤波器响应并改善LDO稳定性。为此,选择具有极低寄生ESR的电容并添加专用串联电阻可能较为实际。上述方案可使用可下载的器件评估器如NI Multisim™在SPICE 中轻松实现仿真。 .

电荷泵和滤波器

电荷泵将鉴相器误差电压转换为电流脉冲,并通过PLL环路滤波器进行积分和平滑处理。电荷泵通常可在最多低于其电源电压(VP)0.5 V的电压下工作。例如,如果最大电荷泵电源为5.5 V,那么电荷泵只能在最高5 V输出电压下工作。如果VCO需要更高的调谐电压,则通常需要有源滤波器。有关实际PLL的有用信息和参考设计,请参见电路笔记CN-0174,5,处理高压的方式请参见利用高压VCO设计高性能锁相环,”6该文章发表于模拟对话第43卷第4期(2009)。有源滤波器的替代方案是使用PLL和针对更高电压设计的电荷泵,例如ADF4150HV ADF4150HV可使用高达30 V的电荷泵电压工作,从而在许多情况中省去了有源滤波器。

电荷泵的低功耗使其看似颇具吸引力,可使用升压转换器从较低的电源电压产生高电荷泵电压,然而与此类DC-DC转换器相关的开关频率纹波可能在VCO的输出端产生干扰杂散音。高PLL杂散可能造成发射机发射屏蔽测试失败,或者降低接收机系统内的灵敏度和带外阻塞性能。为帮助指导转换器纹波的规格,使用图6 的测量设置针对各种PLL环路带宽获得全面电源抑制曲线图与频率的关系。

 

图6.测量电荷泵电源抑制的设置

17.4 mV (–22 dBm)的纹波信号经交流耦合至电源电压,并在频率范围内进行扫描。在每一频率下测量杂散水平,并根据–22dBm输入与杂散输出电平间的差异(以dB表示)计算PSR。留在适当位置的0.1 μF和1 nF电荷泵电源去耦电容为耦合信号提供一定衰减,因此发生器处的信号电平增加,直至在各频率点下引脚上直接测得17.4 mV。结果如图7所示。

在PLL环路带宽内,随着频率增加,电源抑制最初变差。随着频率接近PLL环路带宽,纹波频率以类似于基准噪声的方式衰减,PSR改善。该曲线图显示,需要具有较高开关频率(理想情况下大于1 MHz)的升压转换器,以便尽可能降低开关杂散。另外,PLL环路带宽应尽可能降至最低。

1.3 MHz时, ADP1613就是一款合适的升压转换器。如果将PLL环路带宽设置为10 kHz,PSR可能达到大约90 dB;环路带宽为80 kHz时,PSR为50 dB。首先解决PLL杂散水平要求后,可以回头决定升压转换器输出所需的纹波电平。例如,如果PLL需要小于–80 dBm的杂散,且PSR为50 dB,则电荷泵电源输入端的纹波功率需小–30 dBm,即20 mV p-p。如果在电荷泵电源引脚附近放置足够的去耦电容,上述水平的纹波电压可使用纹波滤波器轻松实现。例如,100 nF去耦电容在1.3MHz时可提供20 dB以上的纹波衰减。应小心使用具有适当电压额定值的电容;例如,如果升压转换器产生18 V电源,应使用具有20V或更高额定值的电容。

 

图7.ADF4150HF电荷泵电源抑制曲线图

使用基于Excel的设计工具ADP161x.可以简化升压转换器和纹波滤波器的设计。图8显示用于5 V输入至20 V输出设计的用户 输入。为将转换器级输出端的电压纹波降至最低,该设计选择噪声滤波器选项,并将VOUT纹波场设定为最小值。高压电荷泵的功耗为2 mA(最大值),因此OUT 为10 mA以提供裕量。该设计使用20 kHz的PLL环路带宽,通过ADF4150HV评估板进行测试。根据图7,可能获得约70dB的PSR。由于PSR极佳,此设置未在VCO输出端呈现明显的开关杂散(< –110 dBm),即使是在省去噪声滤波器时。

 

图8.ADP1613升压转换器EXCEL设计工具

作为最终实验,将高压电荷泵的PSR与有源滤波器(目前用于产生高VCO调谐电压的最常见拓扑结构)进行比较。为执行测量,使用无源环路滤波器将幅度为1 V p-p的交流信号注入ADF4150HV的电荷泵电源(VP)与图6的测量设置相同。后以有源滤波器代替相等带宽的无源滤波器,重复相同的测量。所用的有源滤波器为CPA_PPFFBP1型,如ADIsimPLL所述(图9)。

 

图9.ADlsimPLL中CPA_PPFFBP1滤波器设计的屏幕视图.

为提供公平的比较,电荷泵和运算放大器电源引脚上的去耦相同,即10 μF、10 nF和10 pF电容并联。测量结果显示于图10中:与有源滤波器相比,高压电荷泵的开关杂散水平降低了40 dB至45 dB。利用高压电荷泵改善的杂散水平部分可解释为通过有源滤波器看到的环路滤波器衰减更小,其中注入的纹波在第 一极点之后,而在无源滤波器中注入的纹波位于输入端

 

图10.有源环路滤波器与高压无源滤波器的电源纹波电平

最后一点:图1所示的第三电源电轨(分压器电源,AVDD/DVDD—与VCO和电荷泵电源相比具有较宽松的电源要求,因为PLL(AVDD)的RF部分通常是具有稳定带隙参考偏置电压的双极性ECL逻辑级,所以相对不受电源影响。另外,数字CMOS模块本质上对电源噪声具有更强的抵抗力。因此,建议选择(DVDD)能够满足此电轨电压和电流要求的中等性能LDO,并在所有电源引脚附近充分去耦;通常100 nF和10 pF并联就够了。

结束语

以上已讨论主要PLL模块的电源管理要求,并针对VCO和电荷泵电源推算出规格。ADI公司为电源管理和PLL IC提供多种设计支持工具,包括参考电路和解决方案,还有各种仿真工具,如ADIsimPLL和 ADIsimPower. 了解电源噪声和纹波对PLL性能的影响后,设计人员可以回头推算电源管理模块的规格,进而实现性能最佳的PLL设计。

关键字:电源 编辑:探路者 引用地址:PLL的电源管理设计

上一篇:用于 48V 电源的完整单 IC 电源管理电池维护 / 后备系统
下一篇:电源技巧:一个小小的疏忽就会毁掉 EMI 性能

推荐阅读最新更新时间:2023-10-12 22:52

基于LDO的优化开关电源设计
  电源是各种电子设备必不可缺少的组成部分,其性能的优劣直接关系到电子设备的技术指标及能否安全可靠地工作。目前常用的直流稳压电源分线性电源和开关电源两大类,由于开关电源内部关键元器件工作在高频开关状态,本身消耗的能量很低,开关电源效率可达80%~90%,比普通线性稳压电源提高近一倍,目前已成为稳压电源的主流产品。本文介绍一种应用低压差线性稳压器(LDO)优化开关电源的设计方案,并对该方案的可行性通过实验加以验证。   LDO的基本原理   低压差线性稳压器(LDO)的基本电路如图1所示,该电路由串联调整管VT、取样电阻R1和R2、比较放大器A组成。      图1:低压差线性稳压器基本电路。   取样电压加在比较器A的同相输入端,
[电源管理]
基于LDO的优化开关<font color='red'>电源</font>设计
浅谈LED驱动电源
  LED具有低能耗、寿命长、发热量低、环保等特点,在很多领域内得到了广泛应用,例如:   1 照明领域 路灯、遂道灯、LED格栅灯、LED室内灯、LED天花灯等   2 景观照明 楼宇、路桥、广场建筑设施、草坪灯、幕墙灯等   3 用作背光源 手机、电脑等   4 信息平面显示 显示板、动态广告牌、模拟动画、体育场馆、工商业、其他行业等   5 汽车方面 车厢内的指示灯及内部阅读灯、车外的刹车灯、尾灯、转向灯、侧灯等   6 特殊领域的应用 防爆灯具、矿业生产中的矿灯等   LED是具有二极管特性的发光管,它只能单方向通电。通常LED亮度输出与通过LED电流成正比,但白光LED在大电流下
[电源管理]
浅谈LED驱动<font color='red'>电源</font>
低功耗电源的电感选择
script language=javascript src="/data/js/10.js" /script script type=text/javascript /script script type=text/javascript src="http://pagead2.googlesyndication.com/pagead/show_ads.js" /script script src="http://pagead2.googlesyndication.com/pagead/js/r20101117/r20110307/show_ads_impl.js" /script script goog
[电源管理]
Intersil推出业内首款15A、42V模拟电源模块
电子网消息,全球领先的半导体解决方案供应商瑞萨电子株式会社子公司Intersil今天宣布,推出业内首款42V单通道DC/DC步降电源模块ISL8215M,可提供高达15A的持续电流。该模块可在单一宽输入电压范围中运行,包括工业标准的12V、18V和24V中间总线电源轨。它提供0.6V - 12V可调节输出电压、60mA/mm2的最高功率密度,封装尺寸仅为13mm x 19mm。其96.5%的峰值效率为工业、医疗、RF通信、汽车电子、以及使用锂离子电池的便携式设备中的FPGA、DSP和MCU提供优异的负载点转换性能。 ISL8215M是一套完整的DC/DC电源模块,它在单个紧凑封装内包含了控制器、MOSFET、电感器和无源器件,
[半导体设计/制造]
新颖高效率开关电源控制器设计方案
  1 引言   降压型集成开关电源控制器广泛应用于各类便携式设备中。 近年来,随着电池供电的便携式设备,如手机、MP3 播放器、PDA 等性能的提高和功能的日趋丰富,对于开关电源的效率提出了越来越高的要求。   为提高效率和减少片外元器件, 目前应用的Buck变换器通常集成了功率开关和同步整流开关。 同时, 为减小片外电感元件的尺寸以适应便携式设备的应用,开关频率往往设置为几兆甚至更高的数量级。 由此带来的问题是,当变换器工作在轻载条件下, 开关损耗就变成了主要的功率损耗。 而便携式设备恰恰常工作于待机状态即轻载工作状态下,轻载效率对于延长电池的使用寿命至关重要。 因此,提高轻载效率的问题受到了高度关注。   
[电源管理]
新颖高效率开关<font color='red'>电源</font>控制器设计方案
“洋垃圾”入侵移动电源 电芯寿命难保证
  在今年3·15的电脑报移动电源横向评测中,电脑报对移动电源电芯使用洋垃圾提出了担心,因为这样的产品一旦使用二手电芯,消费者几乎没法发现。5月上旬,一位张姓读者通过电话爆料:某些名牌移动电源厂商用二手电芯组装在产品里当新货卖,以此获得暴利。根据这个线索,5月中旬,本报记者飞赴广东,在深圳华强北、贵屿等地走访,拆解所购产品、暗访物料仓库,逐渐勾勒出一个洋垃圾充斥移动电源市场的真实内幕……   移动电源电芯好比暖水瓶内胆,如果内胆保温能力不足,暖水瓶价值就大打折扣。同理,使用二手或者洋垃圾的电芯,也会因为电芯使用次数有限、转换效率低、容量不够,导致移动电源出现寿命短、充电不稳定、返修率偏高等问题。
[工业控制]
“洋垃圾”入侵移动<font color='red'>电源</font> 电芯寿命难保证
欧胜的WM8352电源管理解决方案被ZiiLABS选用
      欧胜微电子日前对外宣布:前沿性媒体处理器和平台公司ZiiLABS已选用欧胜的WM8352用于其ZMS-08系统模块和Zii开发包,该欧胜芯片是世界领先的、内置立体声编码解码器(codec)的电源管理芯片。       Zii开发包是一种通用的硬件和软件平台,用于以ZiiLABS ZMS富媒体应用处理器系列为基础的手持和嵌入式产品的评估和快速开发。       WM8352是欧胜成功的电源管理解决方案系列产品中的一员, 其功能包括一个电源管理子系统和一个内置的高保真音频编码解码器,可提供高性能音频,并显著降低功耗和延长电池寿命,而且还减少了系统成本。该芯片同时降低了制造复杂程度以及缩短产品上市时间。WM8352还
[电源管理]
欧胜的WM8352<font color='red'>电源</font>管理解决方案被ZiiLABS选用
SynQor®发布新型三相115交流输入VPX电源(VPX-3U-AC115-3-C)
2023年7月12日 - SynQor公司推出适用于军事和航空航天应用的新型三相交流输入(100至140 VrmsL-N、47-800 Hz)28V直流输出的VPX电源 。这款3U VPX电源符合VITA 62.1、VITA 47和VITA 46.11标准,使军工市场的设计人员能够使用最新的灵活、高效和可靠的VPX技术为其机箱供电。 VPX-3U-AC115-3-C电源可提供高达700W的功率,在85℃温度条件下(卡楔锁的温度)的效率为91.5%。 当平衡电流消耗在3%以内时,三相输入电源具有低浪涌特性,并且在功率水平超过200W时具有接近于1的功率因数。它由主路28Vdc 27A和辅路电源3.3Vdc 150mA。主路
[电源管理]
SynQor®发布新型三相115交流输入VPX<font color='red'>电源</font>(VPX-3U-AC115-3-C)
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved