多片高速ADC和DAC在闭环系统中的关键作用

最新更新时间:2015-03-14来源: 互联网关键字:高速ADC  DAC  闭环系统 手机看文章 扫描二维码
随时随地手机看文章
引言

在当今工业自动化应用中,复杂的控制系统代替人工来操作不同的机器和过程。术语“自动化”指其智能化足以制定正确的过程决策从而实现目标结果的系统。我们这里所说的“系统”是指闭环控制系统。这些系统依赖于输入至控制器的传感器数据,提供反馈,控制器据此采取措施。这些措施就是控制器输出的变化。通过确保高性能、高可靠性工业操作,闭环控制系统对于现代化工业4.0工厂的工业自动化和效率至关重要。

本文讨论闭环系统的关键要素,重点关注模/数转换器(ADC)和数/模转换器(DAC)的关键角色。文章介绍多片高速ADC和DAC作为控制系统核心的关键作用和性能优势。最后,我们以MAXREFDES32和MAXREFDES71参考设计为例,介绍隔离电源和数据子系统在工业闭环中的应用。

开环和闭环系统概览

工业控制系统可分为两类:开环和闭环系统。

开环控制系统为连续控制系统,不提供来自于输出的反馈。因此,控制过程只受系统输入的影响。传统上,电控制系统主要为开环,要求人工调节过程变量,以实现或维持预期输出。典型的自动喷洒系统就是开环系统的一个例子。喷洒器的控制器只知道何时打开阀门以及何时将其关闭,并不利用传感器检测土壤的含水量或者利用数据转换器将数据输入至控制器。所以,即使土壤已经湿透或是下雨天,自动喷洒系统仍然会打开阀门;只要没有人手动关闭系统,系统就会执行其任务。开环系统的缺点显而易见:没有任何反馈,系统不能自动调节其过程来更改其输出。因此,开环系统的刚性、不灵活性使其不适合工业控制自动化应用的速度和可变性要求。此外,工厂需要雇佣许多人来监督和管理系统!

现在,我们讨论一下闭环控制。闭环控制系统从传感器收集反馈信息,并对其输出做出相应的过程调节,完全自动化、无需人工介入。家庭中带有温度监控器的暖气系统就是闭环系统的例子。本例中,设定的温度目标是系统的输入,实时环境温度是系统的反馈。温度监控器中的温度传感器将温度数据反馈给控制器。通过将检测的环境温度与设定的温度目标进行比较,控制器做出相应的决策,决定何时打开/关闭锅炉或空调。

高性能闭环设计的关键

电子闭环控制系统通常包括三种元素:控制器、反馈信号输入(ADC)和输出执行器(DAC)。ADC检测并向控制器反馈重要信息。控制器基于反馈信息制定决策,调节控制量;向DAC执行器发送信号,后者处理控制量输出。ADC和DAC的速度和精度对闭环至关重要。如果控制系统不能足够快地响应故障条件,就可能发生灾难性系统故障。

模拟输出的高速和低噪声性能

好的闭环控制系统要求ADC具有高分辨率、低失真以及快采样率,以获得快速、高精度反馈。

图1和2所示为交流信号的FFT和直流直方图结果。交流输入信号的快速傅里叶变换(FFT)和直流输入信号的直方图提供了关于A/D转换系统性能的重要信息。

 

 

图1. 通道1 (AIN1)的交流FFT,使用板载电源;差分-12V至+12V、20kHz正弦波输入信号;400ksps采样率;Blackman-Harris窗;室温。数据来自于MAXREFDES71参考设计。

 

 

图2. 通道1 (AIN1)的直流直方图,使用板载电源;0V直流输入信号;400ksps采样率;65,536个采样;编码分散性为6 LSB,98.6%的编码在三个中心LSB之内;标准偏差为0.664;室温。数据来自于MAXREFDES71参考设计。

对低失真、正弦波信号的一组采样进行FFT分析,常用于判定A/D转换系统的动态性能。低失真信号源、高于被测系统的分辨率绝对是必不可少的。部分重要的动态指标有:

●信噪比(SNR)

●总谐波失真(THD)

●信号与噪声+失真比(SINAD)

●无杂散动态范围(SFDR)

SNR为输入信号均方根值(RMS)与A/D转换系统产生的RMS量化误差之比。从图1中400ksps高速采样的FFT图表可知,SNR大约为90dB。这意味着输入信号的RMS值比RMS量化误差大30,000倍(计算公式为XdB = 20 × log(ratio))。显而易见,比值越大,A/D转换系统的量化误差越小。类似地,THD为输入信号与总谐波失真之比。SINAD为输入信号与量化误差加谐波失真之比,SFDR为输入信号与最大失真分量之比。

往往利用直流信号的直方图确定A/D转换系统的噪声。由于系统中存在噪声,ADC产生的编码将在主值附近。编码的分散性表示A/D转换系统的噪声信息。图2中直方图的标准偏差为0.664(相当于16.6位的有效分辨率),98.6%的编码在前三个中心LSB之内。本例中,标准偏差越小,系统噪声越小。

单调模拟输出的高速和高精度性能

高质量DAC决定整个系统的输出精度,对于任何控制系统都非常重要。几项重要指标决定模拟输出的性能:

●积分非线性(INL)

●微分非线性(DNL)

●总不可调误差(TUE)

●建立时间任何实际的模拟输出电路都有三种基本误差:失调、增益误差和非线性。在很多应用中,可对失调和增益误差进行校准,但非线性误差的修正最为困难。所以,选择具有高线性度的DAC非常重要。INL曲线显示理想DAC输出与DAC实际输出之间的偏差,其中抵消失调和增益误差。图3所示为带有放大器的MAX5316 16位DAC的INL曲线。从曲线可看出,实际输出与理想输出之间的最大偏差大约为12 LSB。

 

 

图3. INL,-10V至+10V输出范围,20%过量程。

DAC的单调性非常重要。DAC编码增大时,单调DAC的输出始终增大或最坏也保持相同。如果在闭环控制系统中使用非单调DAC,负反馈可能变为正反馈。此外,根据控制理论,正反馈系统是不稳定的。为了确定DAC是否为单调,观察其DNL曲线。DNL误差是实际步长与1 LSB理想值之差。步长意味着两个相邻数字输入编码之间的输出电压差。图4所示为带放大器的MAX5316的DNL曲线。对于单调的模拟输出,DNL曲线上的所有点必须大于-1 LSB。

 

 

图4. DNL,-10V至+10V输出范围,20%过量程。

总不可调误差(TUE)曲线显示实际输出电压相对于理想输出电压的误差,以满幅百分比表示。图5所示为带放大器的MAX5316的TUE曲线。本例中,最大输出误差为满幅的0.054%。

 

 

图5. 总不可调输出误差,-10V至+10V输出范围,20%过量程。

最后,建立时间是从更新DAC输出命令到输出达到指标范围内的规定值之间的时间间隔。建立时间受DAC和放大器摆率以及放大器过冲和振铃的影响。例如,在MAXREFDES71参考设计中,电压输出稳定至2 LSB之内只需17μs。

形成闭环

两个新型子系统参考设计满足“不妥协”闭环工厂环境要求。MAXREFDES71#(图6)和MAXREFDES32#子系统具有足够的灵活性,满足使用电压或电流信号的低速和高速闭环系统。这些子系统使用两片高速、高精度和低噪声ADC (MAX11166)和DAC (MAX5316)。400ksps 16位输入通道和高速16位输出通道支持±10V和±20mA信号,再加上20%裕量。集成多种其他高精度和高速元件,集成了电源以及600VRMS数据隔离。MAXREFDES32与MAXREFDES71完全相同,只是采用反激转换器产生隔离电源。两款设计连接至FMC兼容现场可编程门阵列(FPGA)/微控制器开发板。

 

 

图6. MAXREFDES71子系统方框图。

此处所示的所有数据均由MAXREFDES71#参考设计电路板产生。现在,设计者可利用比以往更快的高质量模拟输入和输出构建新型闭环工业系统。并且显而易见,更可靠、更高精度的闭环系统有助于保证工业4.0工厂的效率和正常运转。

关键字:高速ADC  DAC  闭环系统 编辑:探路者 引用地址:多片高速ADC和DAC在闭环系统中的关键作用

上一篇:基于手势识别的智能输入系统设计
下一篇:四轴飞行器飞行原理与双闭环PID控制

推荐阅读最新更新时间:2023-10-12 22:53

dac0832产生正弦波的c程序
下面是一个51单片机做的正弦波发生器,用的最古老的dac0832,程序很有参考价值,大家看看吧。 #include"reg52.h" #include"absacc.h" #include "math.h" typedef unsigned char uint8; typedef unsigned int uint16; typedef unsigned long uint32; #define DAC0832_PORT XBYTE uint8 const code ZXB_code ={ 0x80,0x83,0x86,0x89,0x8c,0x8f,0x92,0x95,0x98,0x9c,0x9f,0xa2
[单片机]
53.PWM DAC实验
一。 PWM DAC的原理 N= ARR-1 T= 定时器一个计数周期的时间,也就是它频率的倒数。 n = CCR计数器的值 任何一个连续信号都可以把它通过傅里叶变换成有直流分量+一次谐波+二次谐波+。。。 。n次谐波(n=无穷大)这种表示。 我们通过定时器产生一个PWM信号,是一系列方波输出到定时器的通道引脚,我们看到公式中有一个直流分量,然后有一次谐波,二次谐波。。。。。n次谐波,如果我们有办法先把谐波这一部分给去掉,那么只剩下直流分量,直流分量中 有几个常量,Vh一般是3.3,Vl一般是0,那么这个公式就可以表示成(n/N)*Vh,如果我们设置好了自动装载值N,那么输出的电压只与n有关,n越大,输出电
[单片机]
53.PWM <font color='red'>DAC</font>实验
新型DAC将欧胜的自然音效带给更多听众
       英国爱丁堡,2009年2月欧胜微电子日前宣布为其非常成功的高性能数字模拟转换器(DAC)系列增添一款新品。这款编号为WM8742的新DAC以专业音频应用为目标,并满足了高端家用音频应用不断增长的需求,诸如A/V接收器、CD、DVD、超级音频光盘系统(SACD)以及家庭影院系统。该款新型24位192kHz的 DAC器件将优异的123dB(立体声)信噪比与欧胜的低带外噪音、世界一流的高线性度、以及一个独特的可编程先进数字滤波器组合结合在一起。这套滤波器解决了现有的高端音频系统存在的局限性和听音问题,如不自然的前响和延迟,它们可导致某些系统出现冷冰冰和人为感觉而使回放失真。WM8742塑造了理想的音频聆听条件,再现了最佳自
[焦点新闻]
【STM32】HAL库 STM32CubeMX教程十---DAC
前言: 本系列教程将 对应外设原理,HAL库与STM32CubeMX结合在一起讲解,使您可以更快速的学会各个模块的使用 所用工具: 1、芯片: STM32F407ZET6/ STM32F103ZET6 2、STM32CubeMx软件 3、IDE: MDK-Keil软件 4、STM32F1xx/STM32F4xxHAL库 知识概括: 通过本篇博客您将学到: DAC工作原理 STM32CubeMX创建DAC例程 HAL库定时器DAC函数库 DAC Digital-to-Analog Converter的缩写。数模转换器。又称D/A转换器,简称DAC,是指将离散的数字信号转换为连续变量的模拟信号的器件。 典型的数字模拟
[单片机]
【STM32】HAL库 STM32CubeMX教程十---<font color='red'>DAC</font>
DAC7611控制数/模转换器程序
/**************************************************** 子程序名:DAC7611 程序功能:控制数/模转换器DAC7611的工作 程序出口:引脚P1.0(输出片选信号) 引脚P1.1(输出时钟) 引脚P1.2(输出数据)    引脚P1.3(输出数/模转换过程启动信号) 12M晶振 *******************************************************/ #include reg52.h #include intrins.h #define uint unsigned int sbit CS =P
[单片机]
多个AD9779 TxDAC器件的同步
       简介   AD9779 TxDAC的DAC输出采样速率最高可达1 GSPS.在某些应用中,例如需要波束导引的应用,用户可以同步多个AD9779.因此,当AD9779以接近最高速度工作时,TxDAC时序特性变得至关重要。   本应用笔记不讨论AD9779运作涉及到的全部细节。若要全面了解其内部数字引擎,用户应参阅AD9779数据手册。本应用笔记扩展了SYNC_I的使用,使多个AD9779器件实现相同的REFCLK/DATACLK同步。   在传统的插值TxDAC中,当DAC采用DAC输出采样速率时钟驱动时,会产生两个问题。第一,可能难以确定输入数据在哪一个DACCLK沿锁存。多数DAC解决这一问题的方法是提供
[电源管理]
多个AD9779 TxDAC器件的同步
ADC/DAC(3)- 数字示波器中ADC的选用
自己动手做一个信号发生器和示波器非常重要,不仅可以深刻理解测量仪器的工作原理、关键技术指标,还可以将书本上学过的模拟电路、数字逻辑乃至嵌入式系统全部串起来,从系统层面对各个部分的功能以及构成有更真切的认识,因此苏老师觉得这两个项目应该是所有电子工程师都要动手做一遍的基础入门项目。 高速ADC是数字示波器的核心部件,今天关于ADC应用的文章就结合我们摩尔吧/硬禾实战营的一个实际项目 - 100Msps的数字示波器的制作来做一个简单的案例分析,数字和处理部分将在将来的文章中具体分析,今天集中在模拟部分: 我们的项目对模拟部分的主要指标要求如下: 单通道、100Msps采样率 模拟带宽20MHz,输入电压的范围 - -10V
[测试测量]
ADC/<font color='red'>DAC</font>(3)- 数字示波器中ADC的选用
微电子所在超高速ADC/DAC芯片研制方面取得突破性
近日,中科院微电子研究所微波器件与集成电路研究室(四室)超高速电路课题组在超高速ADC/DAC芯片研制上取得突破性进展,成功研制出8GS/s 4bit ADC和10GS/s 8bit DAC芯片。   ADC芯片采用带插值平均的Flash结构,集成约1250只晶体管。测试结果表明,芯片可以在8GHz时钟频率下稳定工作,最高采样频率可达9GHz。超高速DAC芯片采用基于R-2R的电流开关结构,同时集成了10Gbps自测试码流发生电路,共包含1045只晶体管。测试结果表明,该芯片可以在10GHz时钟频率下正常工作。   超高速ADC/DAC芯片在光通讯及无线宽带通信领域有广阔的应用前景。这两款芯片的研制成功,大大提升了国内
[模拟电子]
微电子所在超<font color='red'>高速ADC</font>/<font color='red'>DAC</font>芯片研制方面取得突破性
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved