便携DCDC电源新技术促使效率与寿命兼得

最新更新时间:2015-03-23来源: 互联网关键字:DCDC  电源新技术 手机看文章 扫描二维码
随时随地手机看文章
  我们都清楚的看到手持式装置核心处理器的供电电压日益降低,但要兼顾效率与电池寿命,却是另一项挑战。在降压转换过程中最常利用的是开关稳压器和LDO稳压器,但缺点在于尺寸太大,LDO如电压偏离值很大时,转换效率就骤降,开关电容稳压器为新兴技术,结合开关电容器和LDO优点,可整合至可携式应用中。通常开关电源的效率问题是目前大家比较关心的问题,那么怎么提升这个效率呢,且看下文。

  设法降低核心处理器的供电电压是手持式装置的全新技术趋势之一,而在降压的同时,也必须兼顾以更高效率延长电池寿命的需求。目前这些装置里有多种新功能都有降压转换需求,如应用处理器、记忆体和射频(RF)设计等,从负载和空间参数两项考量来看,目前在此类应用上最流行的解决方案,即采开关稳压器和低压降 (LDO)稳压器。

  如只从效率考量,开关稳压器是最佳的选择,然当电子零件高度和解决方案的尺寸限制超出电感器使用范围时,转换器就可能改采LDO或开关电容(SC)稳压器形式,电源解决方案通常无法提供较多电路板空间,但开关稳压器可提供比LDO和开关电容稳压器更大的解决方案尺寸。

  我们利用DC/DC开关电容稳压器来提升电源的效率,那么开关电容器都有哪些优点呢?

  开关电容器可保持给定负载效率

  随着VIN的上升,由转换器产生的VIN和VOUT间的能量增加将引起功率耗损和效率下降。解决此问题所采取的模式为转变一个更高的效率增益,如同汽车替换档位一般。开关电容器类比设有一个类比增益控制和变化,以保持给定负载效率持续性,开关电容器具离散增益步骤,由VOUT/(增益×VIN)来给定效率,且这些效率取决于离散增益,一个LDO仅拥有一个增益及3者中最低的效率,开关电容器稳压器则有3个不同的电压增益,即2/3、1/2和1/3。

  从SC稳压器随着VIN的增长可看出,电压增益变化从2/3~1/2及1/2~1/3,因此整个负载范围的效率达最大化,带来锂离子电池电压范围 3.4~3.8伏特上80%的功率,在相同应用中的LDO却仅达到50%效率,随电感器种类不同,典型的开关稳压器应具有88~90%效率。

  传统上,稳压器乃依据有效数量进行比较,但由于锂离子电池特性,要根据时量效率或锂离子电池充分放电所需时间来判定,根据经验,运用200毫安培的负载电流,使用典型开关稳压器,可比使用开关电容稳压器持续时间多出6~8%,假设最大负载与微处理器中的情况一样,仅表现到时间的20~30%,则电感开关和开关电容稳压器间操作时间的差别可忽略。  须在效率与成本之间取舍

  开关电容稳压器的更多增益可能会增加少许效率,但却须要增加更多外部电容器和内部场效电晶体(FET),促使成本上升,同时也增加解决方案尺寸。上述增益可透过两个外部电容器或快速电容器(CFLY)取得,这些电容器用于储存电荷,并将电荷从VIN传输到VOUT,除快速电容,还需一个输入电容器 (CIN)及输出电容器(COUT),输入电容器指示电压波纹,而输出电容器控制输出电压波纹,依VIN和VOUT可接受的波纹标准值,CIN和COUT 值的一般范围是从1~10微法,且CFLY的数量通常比COUT少,外部电容器透过内部的功率FET在不同的配置中连接到晶片。

  为利用开关电容稳压器来调节输出电压,可考虑使用脉波频率调变(PFM)或脉波宽度调变(PWM),开关电容稳压器的输出阻抗与开关频率和内部功率FET 的电阻成比例。透过调制输出阻抗,可再透过转换器对给定负载进行降压;使用回授,即能控制频率或内部FET阻抗,以调节输出电压,而PFM方案为较传统方法。

  在PFM类系统中,输出电压如高于一个指定值,稳压器即进行关机控制,至输出电压降到所需值以下时再重新开机,使用PFM控制模式的优势是操作电压取决于 VIN和ILOAD,同时两者皆可调整。负载越高、操作频率就越接近指定频率,但此操作范围内的频率变化可能不适用某些可携式应用,输入电压波纹也取决于 VIN和ILOAD。10微法COUT的输出波纹将为50毫伏特,可看到250毫安培负载的波纹频率高于10毫安培负载的波纹频率。

  电压偏离导致LDO效率降低

  LDO在要求的电压与电池电压相近时最有效率,但如电压偏离值很远时,LDO效率就会降的很低,例如以3.6伏特电压为一个仅要求1.5伏特电压的微处理器锂离子电池充电时,把电池电压与1.5伏特LDO连接起来,就能为微处理器产生一个完整、稳定和小量的电源,但耗电量却非常明显。

  LDO消耗功率(PD)等于负载电流(ILOAD)与输入和输出电压的差相乘,即PD=ILOAD×(3.6~1.5)=ILOAD×2.3V。换句话说,此例中,如以LDO做降压转换器时,仅产生42%的效率,表示LDO消耗剩余功率,且大幅增加晶片(Die)温度,而此种温度上升将引发装置可靠性相关问题。

  由于具电压增益能力,开关电容稳压器成为比线性稳压器更有效的解决方案,此电压增益透过在双相位,即充电相位和传输相位中的堆叠电容器和并行电容器所取得的输入电压与输出电压比率,如位于增益配置中的一个开关电容转换器的1/2将把一个3.6伏特的输入电压(VIN)转变为1.8伏特的输出电压 (VOUT);如要求的输出电压是1.5伏特,则功率消耗仅为300毫伏特与负载电流的乘积,相当于83%的效率。  PWM模式可固定操作频率/工作周期

  最近的PWM调控模式处理PFM架构中的各种频率和高输出波纹时,多数开关电容稳压器皆采PWM调制模式,功率FET电阻根据VOUT和ILOAD进行控制,才确实控制快速电容器所提供的充电量,此被称为预调制。在此模式下,操作频率和工作周期皆固定。

  开关电容稳压器是新兴技术结合了开关电容器和LDO的优点,亦即将锂离子电池范围的效率和小尺寸的解决方案整合至可携式应用中,而最近拓扑技术也使用被动元件的更小值以达到更低杂讯,可携式装置中的许多功能都要求降压稳压器须具更小尺寸和更高效率,而开关电容器解决方案为理想选择。

关键字:DCDC  电源新技术 编辑:探路者 引用地址:便携DCDC电源新技术促使效率与寿命兼得

上一篇: 开关电源设计—变压器流程
下一篇:电源设计技巧之如何满足电磁干扰需求

推荐阅读最新更新时间:2023-10-12 22:53

宇宙辐射对OBC/DCDC中高压SiC/Si器件的影响及评估
摘要: 本文介绍了在车载OBC,高压转电压DCDC应用中宇宙辐射对高压功率半导体器件可靠性的影响,评估。 关键词: OBC;DCDC;宇宙辐射;FIT 引言: 汽车行业发展创新突飞猛进,车载充电器(OBC)与DCDC转换器(HV-LV DC-DC)的应用因此也迅猛发展,同应对大多数工程挑战一样,设计人员把目光投向先进技术,以期利用现代超结硅(Super Junction Si)技术以及碳化硅(SiC)技术来提供解决方案。在追求性能的同时,对于车载产品来说,可靠性也是一个重要的话题。 在车载OBC/DCDC应用中,高压功率半导体器件用的越来越多。对于汽车级高压半导体功率器件来说,门极氧化层的鲁棒性和宇宙辐射鲁棒
[电源管理]
宇宙辐射对OBC/<font color='red'>DCDC</font>中高压SiC/Si器件的影响及评估
开关电源设计中的两项新技术
  电子信息产业的发展推动了电源技术不断地进步,⒛世纪70年代发生了“20 kHz革命”,电源实现了高效率、小型化,从而进人了开关电源时代。80年代计算机完成开关电源换代,90年代又迎来了通信设备电源和其他设备开关电源化的高潮。   当前开关电源的发展动向有两个:一是对于内置式开关电源要继续小型化;二是对于新一代微处理机要求供电电源输出电压低至1~2 V,输出电流达50~100 A的开关电源的解决。   开关电源电路的集成化是小刷化的重要条件,也是开关电源降低成本,提高可靠性的重要因素。20世纪70年代问世的TL494开关电源控制器,至今仍被广泛应用,可见电源集成化生命力的强大。初期,集成化只局限在小功率控制电路,这些
[电源管理]
直流开关电源新技术应用与发展
    1 高频开关电源组成原理     高频开关整流器一般是先将交流电直接经二极管整流、滤波成直流电,再经过开关电源变换成高频交流电,通过高频变压器变压隔离后,由快速恢复二极管高频整流、电感电容滤波后输出,见图1。     1.1 主电路     从交流电网输入、直流输出的全过程,包括:     (1)输入滤波器:其作用是将电网存在的杂波过滤,同时也阻碍本机产生的杂波反馈到公共电网。     (2)整流与滤波:将电网交流电源直接整流为较平滑的直流电,并向功率因数校正电路提供稳定的直流电源。     (3)功率因数校正:位于整流滤波和逆变之间,为了消除由整流电路引起的谐波电流污染电网和减小无功损耗来提升功率因数。    
[电源管理]
直流开关<font color='red'>电源</font>的<font color='red'>新技术</font>应用与发展
新技术助力数字电源起飞
随着 电源|稳压器 系统的性能和功率的不断提高,实现电源性能指标所必需的元件数量和成本也随之增加,越来越多的控制需要通过具有成本效益的数字 电路 实现。数字电源技术为电源设计领域注入了新的活力,同时也对电源设计人员提出了更高的要求。相比于模拟电源,数字电源能提供最高的能源效率,并能与其它器件更容易集成。但由于其设计的复杂性以及软件控制跟质量控制一直是业界没有解决的问题,目前数字电源市场接受率只有10%。   突破性技术推进数字电源市场   如何在传统技术的基础上不断创新,进而设计出满足未来市场需求的电源系统将成为电源设计人员必须面对的新课题。日前,ADI宣布了其创新的数字电源产品——ADP1043数字P
[新品]
在分布式电源系统中采用集成DCDC转换器节省空间、缩短研发时间
传统的分布式电源架构采用多个隔离型DC-DC电源模块将48V总线电压转换到系统电源电压,如5V、3.3V和2.5V。然而该配置很难满足快速响应的低压处理器、DSP、ASIC以及DDR存储器的负载要求。这类器件对电源提出了更加严格的要求:非常快的瞬态响应、高效率、低电压以及紧凑的电路板尺寸。 引言 通过使用单个大功率、隔离型DC-DC模块将48V电压转换成一个中等电源,如12V或更低电压,可以获得较好的系统性能。将这一中等电压再转换到系统负载所要求的具体电压。这样的电压转换可以通过非隔离、负载点电源实现,如图1右侧框图所示。对于第二级电源转换,集成开关稳压器是非常理想的选择,因为输入电压(≤ 12V)和输出电流( 10A)相对较低。
[电源管理]
在分布式<font color='red'>电源</font>系统中采用集成<font color='red'>DCDC</font>转换器节省空间、缩短研发时间
变频电源技术特点及最新技术
  变频电源技术特点   提供世界各国标准电源、稳定纯净正弦波,模拟测试各种电器产品   16位微控制器(模拟)控制,输出电压、频率智能(模拟)控制,操作灵活方便   高频PWM设计,以IGBT做功率推动,体积小,噪音低   独特的瞬时值控制方式,可预先设定标称电压-10%~-30%及+10%~+25%,控制精度高,波形品质好,可适应各种负载   效率高达85%以上,适用负载广,负载功率因数±0.5~1.0均可   暂态反应快速,对100%的加载或去载,稳压反应时间在2ms以内   过载能力强,瞬间电源能承受额定电流300%   具过高电流、超载、超温等多重保护及告警   电压(V)、电流(A)、频率(HZ)、功率(W)、功率因
[电源管理]
同步整流BUCK型DCDC模块TPS54310的平均SPIC
自从1978年,R.Keller 首次运用R.D.Middlebrook的理论进行 开关 电源 的SPICE仿真,近30年来,在 开关 电源 的平均SPICE模型的建模方面,许多学者都建立了自己的模型理论,从而形成了各种SPICE模型。这些模型各有所长,比较有代表性的有:Dr. Sam Ben-Yaakov的开关电感模型;Dr. Ray Ridley的模型;基于 Dr. Vatche Vorperian的Orcad9.1的开关电源平均Pspice模型;基于Steven Sandler的ICAP4的开关电源平均Isspice模型;基于Dr. Vincent G. Bello的Cadence的开关电源平均模型等等。本文将在Dr. Sa
[模拟电子]
MC3406A升压/降压DCDC集成变换器
MC3406A升降压DCDC集成变换器 MC3406A是一种新型单片升降压DC-DC变换器集成电路,其输入电压为3~40V,输出电压可调,输出开关电流可至l.5A,并有温度补偿参考电压源,有电流限制功能。该集成电路只需配用少量外部元件,就能组成升压、降压、电压反转型DC-DC变换器,可广泛应用于各种便携式仪器、仪表等设备。 MC3406A用作升压式DC-I)C变换器电路: 用作降压式DC—DC变换器: 用作反转式DC-DC变换器:
[电源管理]
MC3406A升压/降压<font color='red'>DCDC</font>集成变换器
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved