随着技术不断进步,市场对设备秏电量的要求也越来越严格。小至移动装置、大到资料中心,低秏电的要求已经对半导体生态系统产生庞大压力。不仅既有的设计及架构需重新考量,应用的技术及验证方法需改变,甚至对结果的预期也需重新调整。即使如此,电力的问题还是如影随形,无法轻易解决。
据媒体报导,在过去,常面对的电源问题不外乎漏电流(current leakage)、电迁移(electromigration)、静电放电(electrostatic discharge)、电阻电容延迟(RC delay)或设计不良而缩短电池寿命等。而这些问题均由大型且复杂的工程团队负责处理。即使问题无法缓解,最后仍可要求制造厂调整制程解决。
不过在55纳米制程跃升为物联网(IoT)设备主流后,及芯片设计要求运用多核心的趋势下,待解决的电力范畴常高达数百项,设计工程师不得不提升电源技术复杂度因应。
同时,制造端也不似过往可轻易调整制程解决电源问题。为此,晶圆厂已尝试运用包括减少导线间闸极氧化层(Gate Oxide),或在16及14纳米制程增加动态电力密度,甚至采用更大型、更昂贵的次世代制程因应越趋复杂的设计,以解决秏电问题。
据国际半导体技术发展蓝图(ITRS Roadmap)估测,当制程从45纳米降至10纳米,芯片效能将提升1.3倍,而耗电将减少4.5倍,电晶体的数量也能增加1倍。不过,这样的推估显然过于乐观。欲解决电力与效能问题,各个方面均需做出调整。
电力与效能是一体二面。在过去,效能达标后电力设计即使不符要求,最后问题总能解决。但自从智能型手机出现,情况开始改观。一般来说,电力设计需考量四项重点,包括密度(热平衡)、输送(尖峰管理)、漏电(闲置耗电)及寿命(可靠性)等,而调整设计架构(Architecture)效果较为显著。
举例来说,在思考架构时就需将电源纳入考量,并与后续设计做整合。同时,设计端也需对应架构的变化据以调整并降低秏电。 此外,设计上也可采用近临界(Near-Threshold)或次临界(Sub-Threshold)技术协助。近临界或次临界技术是除了考量新封装方式、采用新型态存储器或客制芯片外,业界寻求解决秏电问题的方法之一。不过,这些方法大多仍在研发阶段,实际帮助有限。 安谋(ARM)指出,在65~130纳米制程中,仅需考虑大约10项关于制程、电压和温度(Process, Voltage and Temperature;PVT)的制程临界参数(Corner)。但到了16或14纳米,PVT参数增至50项以上,大幅提升设计难度。再加上高达上百项的电源管控项目,传统验证工具及方法均不足以因应。
明导国际(Mentor Graphics)高层指出,面对复杂的电源问题,需要新的工具协助工程师在设计系统单芯片(SoC)时即将电源纳入考量。好消息是,这些工具正在逐步改进,变得更有弹性。
电源问题已经快速成为芯片设计时最棘手的问题之一。随着制程不断精进及更多元件的采用,电源问题只会变得更多、更繁杂且更需秏时解决。若无法适当因应,不仅开发时程将拉长,验证无法落实,甚至产品可靠性都将受质疑,影响巨大。
关键字:工艺制程 电源设计
编辑:chenyy 引用地址:工艺制程跑太快,电源芯片设计拖后腿?
推荐阅读最新更新时间:2023-10-12 22:55
电源设计十日谈 | 第二日:低压DC电路开机测试
电源设计人员的需求正变得越来越高,他们面临着巨大的压力,需要改善效率,降低成本,缩短产品开发周期。电源设计是一项复杂的工作,这一过程有许多校验点。在电源设计系列专题中,我们将向您介绍10个设计阶段中每个设计阶段的测试要求,并给出小贴士,让您的测试更高效,让您的生活更轻松。 使用吉时利DMM 7510检查电压和纹波,确保满足规范。 原型制作是设计中比较激动人心的步骤之一。在这个阶段,在理想情况下,您已经看到设计愿景就要变成现实,如果一切能够照计划进行的话。可能会出现很多问题,如电路板布线、焊点、元器件贴装和寄生电容等,因此在测试原型电源时,最好要审慎。 这是一种常见作法,但仍需指出的是,应使用数字万用表检查所有输入
[测试测量]
linear推出高性能隔离式电源设计方案
最近在技术、设计简化、仿真、成本节省以及对组件采购的全面控制方面均取得了进步,因此隔离式 DC/DC 转换器用户正在放弃现成有售的砖式设计。LTC3756 和 LTC3766 组合起来形成了一个相对简单的有源箝位隔离型正激式转换器,其具有直接磁通变压器限制功能,能可靠地保护转换器并实现快速瞬态响应;同时与可替代解决方案相比,还减少了组件数。无论设计定制电源是为了满足特定尺寸、输入和输出要求,还是为了达到成本目标,这个非凡的芯片组都为高可靠性应用提供了全新的简单性、很少的组件数和前所未有的灵活性。最后,这两款器件非常易于用来建立解决方案。
对于高效率地将配电总线电压转换成隔离式低电压,预制的隔离式 DC/DC 转换器和模块提供了
[工业控制]
经典嵌入式系统电源设计方案解析
本文探讨便携嵌入式系统电源设计的注意事项以及设计中应遵循的准则。这些原则对任何具有强大功能且必须以电池供电的便携嵌入式系统电源设计都是有帮助的。根据本文描述的构造模块,读者可以为特定设计选择合适的器件以及设计策略。
为电源电路规定具体的功能和架构模块并非微不足道,这些工作直接影响到电池供电系统的工作时间。电源系统架构会因嵌入式产品和应用领域的不同而各异。下图是典型便携嵌入式系统中的电源方案。
下面我们分别定义图中每个组成部分的要求。假设该产品由电池组或外接电源供电。电源路径控制器的功能是当有多个电源时,负责切换至合适的电源。在某些设计中可能需要考虑包括新兴的USB和以太网供电(PoE)等供电方式。
[电源管理]
基于IM14400的三相正弦波变频电源设计
1 引言
由于我国市电频率固定为50 Hz,因而对于一些要求频率大于或小于50 Hz的应用场合,则必须设计一个能改变频率的变频电源系统。目前最常用的是三相正弦波变频电源。该电源系统主要由整流、逆变、控制回路3部分组成。其中,整流部分用以实现AC/DC的转换;逆变部分用以实现DC/AC的转换;而控制回路用以调节电源系统输出信号的频率和幅值。
2 系统总体设计方案
将市电通过隔离变压器输入到交流变频电源系统,隔离变压器的输出经过整流桥后,产生全波整流信号。全波整流信号滤波生成与输入交流电对应的直流电,从而实现AC/DC转换。该系统全波整流桥采用集成整流桥KBL406,三相逆变器模块IM1
[电源管理]
安森美网上研讨会将探讨图腾柱PFC拓扑如何赋能更高能效的电源设计
该活动将阐述最新器件如何能减少开发时间和成本,使方案能更快面市 2022年5月25日—领先于智能电源和智能感知技术的 安森美(onsemi) ,将在大中华区举办普通话网上研讨会直播,阐述公司专用于无桥图腾柱功率因数校正 (TP PFC) 拓扑结构的先进混合信号控制器。 该技术网上研讨会主题为“图腾柱PFC技术赋能更高能效的电源 ”,将于中国时间6月23日上午10:00直播,介绍TP PFC技术如何不复杂地提高电源能效。 安森美将讲述针对超高密度离线电源的NCP1681。该新的控制器以适用于达350 W设计的 NCP1680的成功为基础,将功率能力扩展到千瓦范围。 在过去,TP PFC设计需要使用MCU,这增加了设计
[电源管理]
基于SG3525的车载正弦逆变电源设计
随着社会的发展,汽车越来越与人们的生活息息相关,而汽车用的直流电压一般为12V,不能为便携式电子设备直接使用。为此,车载电源(就是把直流12 V电压转换成交流220 V/50 Hz电源)的研制日益引起人们的重视。
传统车载电源一般采用逆变器加工频变压器的方案,它存在体积大、效率低等缺陷。随着新型电力电子器件和电力电子技术的发展,采用高频链的方案来实现无工频变压器的逆变电路,可以很好地解决传统车载电源存在的问题,同时能保证车载电源的输出电压更稳定、更平滑。
1 车载电源电路结构与功能分析
车载电源系统如图1所示。12V直流电压经过高频逆变和高频整流,得到一个符合要求的:350V直流电压,该部分的控制信号由TL494芯
[电源管理]
路灯照明系统中智能稳压电源设计应用
引言 现今工业厂区普遍有较大的工作区域,其间路灯众多,一般采用的是高压钠灯,而该灯功耗非常大,导致厂内供电电压不稳定,波动幅度大。尤其在下半夜,电压通常高达250V以上,致使灯泡损耗率极高(达60%以上)。为节省能耗,减少浪费,降低成本,有必要进行节能改造。 1 节能改造分析 1.1 供电状况 供电部门为了避免输电过程中的各种损耗以及用电高峰期造成线路末端电压过低对用电设备产生的不良影响,而以比标称电压高10%的电压向用户(以单相220V标称电压为例,实际供电电压为220 22010%=242V)供电,以确保供电线路远端的电压不会低于220-22010%=198V。因此供电线路上的绝大部分区域的电压都会等
[电源管理]
基于TPS54350的红外热像仪电源设计
红外热像仪是一种利用红外探测器将看不见的红外辐射转换成可见图像的被动成像仪器,其对红外图像实时处理的特点要求配套DSP有很高的处理速度。而且,红外设备热敏性高,易受温度等环境因素的影响,在不同的应用场合需要不同的处理方法。因此,一个稳定而可靠的电源系统是至关重要的。本系统采用了TMS320DM6437来实现电源系统,可根据环境的变化而采用不同的算法和参数。
根据TMS320DM6437的数据手册,其需要VCORE (1.2V)、VDDR(1.8V)和VI/O(3.3V)三种电源,内核电源的最大电流为597mA,而I/O电源的最大工作电流是25mA。另外,还需考虑上电顺序。同时,热像仪的调焦电机需12V电源,其他
[电源管理]