实时功率GaN波形监视

最新更新时间:2015-10-27来源: EEWORLD关键字:GaN 手机看文章 扫描二维码
随时随地手机看文章
Grant Smith,德州仪器 (TI) 业务拓展经理
 
简介
 
功率氮化镓 (GaN) 器件是电源设计人员工具箱内令人激动的新成员。特别是对于那些想要深入研究GaN的较高开关频率如何能够导致更高频率和更高功率密度的开发人员更是如此。RF GaN是一项已大批量生产的经验证技术,由于其相对于硅材料所具有的优势,这项技术用于蜂窝基站和数款军用/航空航天系统中的功率放大器。在这篇文章中,我们将比较GaN FET与硅FET二者的退化机制,并讨论波形监视的必要性。
 
使用寿命预测指标
 
功率GaN落后于RF GaN的主要原因在于需要花时间执行数个供货商所使用的成本缩减策略。最知名的就是改用6英寸的硅基板,以及更低成本的塑料封装。对于电源设计人员来说,理解GaN有可能带来的性能提升,以及某些会
随时间影响到最终产品性能的退化机制很重要。
 
联合电子设备工程委员会 (JEDEC) 针对硅器件的认证标准经证明是产品使用寿命的很好预测指标,不过目前还没有针对GaN的同等标准。要使用全新的技术来减轻风险,比较谨慎的做法是看一看特定的用例,以及新技术在应用方面的环境限制,并且建立能够针对环境变化进行应力测试和监视的原型机。对于大量原型机的实时监视会提出一些有意思的挑战,特别是在GaN器件电压接近1000V,并且dv/dts大于200V/ns时更是如此。
 
一个经常用来确定功率FET是否能够满足目标应用要求的图表是安全工作区域 (SOA) 曲线。图1中显示了一个示例。

  
图1.GaN FET SOA曲线示例,此时Rds-On = 毫欧
 
硬开关设计
 
功率GaN FET被用在硬开关和数MHz的谐振设计中。上面展示的零电压 (ZVS) 或者零电流 (ZCS) 拓扑为数千瓦。SOA曲线的应力最大的区域是右上角的电压和电流最高的区域。在这个硬开关区域内运行一个功率GaN FET会导致由数个机制而造成的应力增加。最容易理解的就是热应力。例如,在使用一个电感开关测试电路时,有可能使器件从关闭时的电流几乎为零、汲取电压为几百伏,切换到接通时的电流几乎瞬时达到10A。
 
器件上的电压乘以流经的电流可以获得瞬时功率耗散,对于这个示例来说,在转换中期可以达到500W以上。对于尺寸为5mm x 2mm的典型功率GaN器件,这个值可以达到每mm2 50W。所以用户也就无需对SOA曲线显示的这个区域只支持短脉冲这一点而感到惊讶了。由于器件的热限值和封装的原因,SOA曲线的右上部被看成是一个脉宽的函数。由于曲线中所见的热时间常数,更短的脉冲会导致更少的散热。增强型封装技术可被用来将结至环境的热阻从大约15°C/W减小到1.2°C/W。由于减少了器件散热,这一方法可以扩大SOA。
 
SOA曲线
 
德州仪器 (TI) 有一个系列的标准占板面积的功率MOSFET、DualCool™ 和NexFETs™。这些MOSFET通过它们封装顶部和底部散热,并且能够提供比传统占板面积封装高50%的电流。这使得设计人员能够灵活地使用更高电流,而又无需增加终端设备尺寸。与硅FET相比,GaN FET的一个巨大优势就是可以实现的极短开关时间。此外,减少的电容值和可以忽略不计的Qrr使得开关损耗低很多。在器件开关时,电压乘以电流所得值的整数部分是器件必须消耗的功率。更低的损耗意味着更低的器件温度和更大的SOA。
 
SOA曲线所圈出的另外一个重要区域受到Rds-On的限制。在这个区域内,器件上的电压就是流经器件的电流乘以导通电阻。在图1所示的SOA曲线示例中,Rds-On为100毫欧。硅MOSFET的温度取决于它们的Rds-On,这一点众所周知。在器件温度从25ºC升高至大约100ºC时,它们的Rds-On几乎会加倍。
 
动态Rds-On
 
GaN FET具有一个复杂的Rds-On,它是温度,以及电压和时间的函数。GaN FET的Rds-On对电压和时间的函数依赖性被称为动态Rds-On。为了预测一个GaN器件针对目标使用的运行方式,很有必要监视这些动态Rds-On所带来的影响。与SOA曲线的温度引入应力相类似,电感硬开关应力电路比较适合于监视Rds-On。这是因为很多潜在的器件退化是与高频开关和电场相关的。
 
图2是一个简单开关电路,这个电路中给出了一种在SOA右上象限内实现循环电流,并对器件施加应力的方法。

  
图2.电感硬开关测试电路
 
宽带隙
 
GaN是一种宽带隙材料,与硅材料的1.12eV的带隙相比,它的带隙达到3.4eV。这个宽带隙使得器件在被击穿前,能够支持比同样大小的硅器件高很多的电场。某些器件设计人员常用来帮助确定器件可靠性的测试有高温反向偏置 (HTRB)、高温栅极偏置 (HTGB) 和经时电介质击穿 (TDDB)。这些都是静态测试,虽然在验证器件设计有效性方面是好方法,但是在高频开关动态效应占主导地位时,就不能代表典型使用情况。高温工作寿命 (HTOL) 是器件开关过程中的动态测试。特定的工作条件由制造商确定,但是这些工作条件通常处于某些标称频率、电压和电流下。
 
早期对于GaN针对RF放大器的使用研究发现了一个性能退化效应,此时器件能够传送的最大电流被减少为漏极电压偏置的函数。这个随电压变化的(捕获引入)效应被称为“电流崩塌”。在缓冲器和顶层捕获的负电荷导致电流崩塌或动态Rds-On增加。在施加高压时,电荷可被捕获,并且在器件接通时也许无法立即消散。已经采用了几个器件设计技巧(电场板)来减少大多数灵敏GaN FET区域中的电场强度。电场板已经表现出能够最大限度地减小RF GaN FET和开关功率GaN FET中的这种影响。
 
GaN是一种压电材料。GaN器件设计人员通过添加一个晶格稍微不匹配的AIGaN缓冲层来利用这个压电效应。这样做增加了器件的应力,从而导致由自发和压电效应引起的极化场。这个二维电子气 (2DEG) 通道就是这个极化场的产物。具有2DEG通道的器件被称为高电子迁移晶体管 (HEMT)。不幸的是,在器件运行时,高外加电场也会导致有害的压电应力,从而导致另外一种形式的可能的器件退化。对于诸如GaN的新技术来说,拥有一个证明可靠性的综合性方法很重要。如需了解与TI计划相关的进一步细节,请参考Sandeep Bahl的白皮书,一个限定GaN产品的综合方法。
 
为了降低成本,功率GaN目前采用的是6英寸硅基板。由于硅和GaN晶格不匹配,会出现线程脱位。这会导致晶格缺陷,并增加捕获的可能性。这些捕获的影响取决于它们的数量和在器件中的位置。捕获状态,占据或非占据,也是施加的电场和时间的一个函数。捕获充放电可能在最短100ns到最长数分钟的时间范围分布。最接近栅极区域的捕获充电和放电会调制器件的转导。所有这些效应是GaN FET的Rds-On的复杂电压和时间相关性的基础。在限定期间,工程师通常在延长的期间内对器件施加DC应力,并且定期移除这一应力,以描述单个半导体测试的情况。移除器件电压偏置,即使只有几秒钟的时间,也可以实现某些捕获放电,这样的话,就不会影响到与实际运行相关的动态Rds-On值了。
 
总结
 
与硅FET相比,功率GaN FET具有很多优势,比如说更低的开关损耗和更高的频率切换能力。更高的开关频率可被用来增加系统的电源转换密度。要限定一个正在使用功率GaN FET的系统,设计人员应该了解可能的退化源,并随时监视它们在温度变化时的影响。一个监视动态Rds-ON增加的简单方法就是测量时间和电压变化过程中的转换过程的效率。为了更好地了解损耗出现的位置,系统被设计成能够实时监视漏极、栅极、源极和器件电流波形。此系统能够通过它们的SOA,以1MHz以上的频率,在电压高达1000V和电流高达15A时,硬开关FET。
 
捕捉和分析实时波形可以帮助我们更好地理解高频效应,比如说dv/dt、栅极驱动器电感和电路板布局布线,这些在基于GaN的设计中都很关键。监视时间和温度范围内趋势变化的实时信息能够为我们提供更好的GaN FET退化信息,并使我们对于更加智能器件和控制器产品的需求有深入的理解。
 
参考文献
 
1.Kollman, Robert. 电源技巧29:估算热插拔MOSFET内的瞬态温度上升—第2部分,EFTimes,2010年11月7日
2.下载LMG5200 技术指南
3.进一步了解TI GaN解决方案
4.Bahl, Sandeep. 一个限定GaN产品的综合方法,白皮书,德州仪器 (TI),2015年3月
关键字:GaN 编辑:冀凯 引用地址:实时功率GaN波形监视

上一篇:工艺制程跑太快,电源芯片设计拖后腿?
下一篇:Silicon Labs隔离驱动器推动高速电源传输系统发展

推荐阅读最新更新时间:2023-10-12 22:55

安森美展示LLC电源、GaN的新发展和电机驱动控制
演示LLC电源,GaN的新发展和电机驱动控制,以及专家在研讨会演说 推动高能效创新的安森美半导体 (ON Semiconductor,美国纳斯达克上市代号:ONNN) 将在美国应用电力电子会议 (APEC) 展台407展示最新的电源管理技术,包括用于电脑和LED电视的新的LLC电流模式电源,GaN方面的重大发展,以及无位置传感器电机驱动控制器。 电流模式LLC电源 其中一个演示关于业界首款电流模式LLC控制器NCP1399,重点展示它的安全特性及电流模式控制方案固有的优势。该电源参考设计将集成NCP1399、NCP4810 X2 电容放电器、NCP1602功率因数控制器,以及NCP43
[电源管理]
功率半导体如何赋能新能源电动车
随着汽车电动化、智能化、网联化等发展,汽车电子迎来结构性变革大机会。在传统燃料汽车中,汽车电子主要分布于动力传动系统、车身、安全、娱乐等子系统中。按照功能划分,汽车半导体可大致分为功率半导体(IGBT和MOSFET等)、MCU、传感器及其他等元器件。 对于新能源汽车而言,汽车不再使用汽油发动机、油箱或变速器,“三电系统”即电池、电机、电控系统取而代之,新增DC-DC模块、电机控制系统、电池管理系统、高压电路等部件。相应地实现能量转换及传输的核心器件功率半导体含量大大增加。因此从半导体种类上看,传统燃料汽车中MCU含量最高(23%),而新能源汽车中功率半导体含量最高(55%)。 新能源汽车市场概况 目前,我国20
[半导体设计/制造]
功率半导体如何赋能新能源电动车
英飞凌和松下联合开发GaN技术
英飞凌和松下日前签署一项合作,联合开发GaN器件,该产品是基于松下的增强型GaN材料技术与英飞凌的SMD封装技术相结合。 日前,公司将率先推出600V 70m 的样片,采用DSO封装。 作为下一代重要的半导体技术,GaN越来越受到重视,主要特点是具备高功率密度小尺寸的特点,另一点则是提高能源效率的一大关键。 一般来说,基于硅上GaN技术的电力设备可用于广泛的领域,从高电压的工业应用,如服务器电源到DC-DC转换的低电压应用等。 IHS预测,GaN功率器件相关市场年复合增长率将超过50%,从如今的1500万美元至2023年的8亿美元。
[电源管理]
EPC与MPS合作开发基于新型GaN FET的更高效、更小、更快的双向转换器
EPC与MPS合作开发基于新型GaN FET的2 kW、稳压输出电压、48 V/14 V转换器参考设计,实现更高效、更小、更快的双向转换器 EPC9165 是一款两相、稳压输出电压、48 V/14 V双向转换器,可实现2 kW 的功率和 96.8% 的峰值效率 宜普电源转换公司(EPC)宣布推出 EPC9165 ,这是一款2 kW、两相48 V/14 V双向转换器,在小尺寸内实现97%的峰值效率,非常适合具有高密度和高功率的48 V电池组,例如电动和轻型运输所需的电池组。 该解决方案是可扩展的。4 kW 可以并联两个转换器,6 kW 可以并联三个转换器,或者 1 kW 可以只用一相。在本应用中,输出电压为14 V
[电源管理]
EPC与MPS合作开发基于新型<font color='red'>GaN</font> FET的更高效、更小、更快的双向转换器
电动汽车实现简化设计,“减重瘦身”不再难
目前,电动汽车电池行业五分之二的顶级公司在中国,国内各种电动汽车保有量已超过 400 万台;更有预测说:到 2030 年,中国将占全球电动汽车(EV)电池价值链的三分之二。这说明什么?电动汽车已经成为一种趋势,但是,其续航里程仍是消费者最关心的问题之一,也是主机厂改善消费体验,从而打动用户的重要卖点,特别是充电时间。 另外,由于先进驾驶员辅助系统(ADAS)和信息娱乐和功能控制系统等新功能的不断增加,使车辆整体能耗越来越大。因此,必须利用更先进的半导体技术提升能量密度、充电效率和可靠性,同时减小体积和重量,让电动汽车跑得更远,与燃油汽车有相同的充电体验和续航里程。这就是近来人们听到的:汽车越智能,就越需要 GaN(氮化镓)。
[嵌入式]
电动汽车实现简化设计,“减重瘦身”不再难
ST MasterGaN系列再添两类新品,补充家族产品线
ST的MasterGaN将GaN晶体管和半桥门驱动器集成在一个芯片上。如今,该家族已经陆续开发出一系列高效产品,以支持对效率要求不断提高的电源管理市场。 意法半导体最近在其现有的MasterGaN平台(MasterGaN1、MasterGaN1和MasterGaN4)中添加了MasterGaN3和MasterGaN5。这些解决方案将带有栅极驱动器的GaN晶体管集成在一个单一的紧凑封装中。 这些新的MasterGan与其他产品的差别在哪里? MasterGaN平台概述 意法半导体公司的MasterGaN平台是一个高功率密度的半桥系统,将GaN晶体管和半桥门驱动器集成到一个封装中,其中GaN晶体管具有更高的工作频率、功
[电源管理]
ST MasterGaN系列再添两类新品,补充家族产品线
日本碍子计划2012年内投放4英寸GaN基板
    日本碍子公司公布了将于2012年内向市场投放口径为4英寸的GaN基板的业务目标。该公司目前正在样品供货2英寸产品。在2012年3月上旬举行的“第四届日本东京国际照明展(LED Next Stage 2012)”上,该公司展出了GaN基板的试制品,并公布了有关业务计划。日本碍子正面向LED芯片及功率半导体开发GaN基板。在GaN基板市场上,住友电气工业高居份额榜首,而三菱化学在其后紧追不舍。在激烈的竞争下,日本碍子“打算致力于GaN基板业务,逐渐占领该市场”(解说员)。       GaN基板主要用于制造高功率白色LED,原因是能够轻松制造出白色LED不可缺少的、高效率高功率蓝色LED芯片。比如,日本碍子设想将GaN基板用
[家用电子]
GaN挑战硅器件市场 复合年增率达80%
  据市场调研公司Yole Developpement,2007年氮化镓(GaN)射频器件市场为1,700万美元。该市场65%属于研发、17%属于国防和卫星、16%属于3G基站和2%属于LTE/WiMax应用。   由于GaN在LTE/WiMax领域的强劲渗透,Yole预测GaN RF晶体管市场到2010年将增长到1亿美元左右,而2008年约为3,000万美元。这意味着2008-2010年复合年增长率为80%。   Yole预测,2012年GaN市场的研发比例将下降至6%,国防与卫星所占比例将上升至27%,3G基站所占比例将上升到31%,LTE和WiMax所占比例将上升到29%。广播市场将占4%。Yole没有预测201
[焦点新闻]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved