直流充电桩上电源、CAN、RS485、RS232的隔离应用

最新更新时间:2016-06-14来源: ZLG致远电子关键字:直流  充电桩  电源  CAN  RS485  RS232  隔离应用 手机看文章 扫描二维码
随时随地手机看文章
直流充电桩是一个典型的强弱电结合的电子系统,充电功率流的强电部分跟后台的控制、显示、通讯、计费等弱电系统集合在一起,EMC和可靠性兼顾的问题比较棘手。下面简要描下电源、CAN、RS485/232的隔离在直流桩上的应用。
图 1 充电桩示意图
 
一、直流桩的主要通信方式
 
1、CAN-bus:根据GB/T 20234.1-2015《电动汽车传导充电用连接装置》的规范,直流桩与电动汽车通过CAN接口进行通信,每一个充电插头都有CAN接口。一桩两充、一桩四充则有多个CAN接口。同时,控制单元和充电机之间一般也通过CAN通信,控制整个充电的过程。
2、RS485:电能表、绝缘检测和控制单元之间一般通过RS-485相连,完成电量的统计计费、漏电检测等。
3、RS232:刷卡、微打等功能部件和控制单元之间,一般用RS-232相连,完成身份识别、扣费、账单打印等功能。
4、Wifi、GPRS、工业以太网等:主要是连接车联网、服务器后台等,方便实现远程的系统监控、升级、数据管理等。
如图 2所示是国家电网的直流充电机通用技术规范示例的通信关系图。
图 2 国家电网的充电桩通信关系图
 
二、直流桩上的电源、CAN、RS485/232隔离应用解决方案
 
就CAN、RS485、RS232的通信方式来说,不论是直流桩还是交流桩,因一般通信的距离不会很长,节点数也不需要很多,一般的收发器都能满足波特率、节点数量的需求。对于直流桩而言,同时也需强调其它保护及可靠性的方面的需求:
1、优异的EMS性能:直流桩内部或周边有大功率的充电机,会产生较强的电磁干扰,通信模块自身需能有效防护电磁能量,同时具备隔离功能,降低每个子系统相互之间的串扰及共模噪声的影响。
 
2、可靠的总线防护:充电桩在给车充电时,充电枪常需跟车载充电口连接、断开,同时不同汽车的车况环境不一样,在此过程中,充电枪内负责跟BMS通信的CAN接口极易产生ESD、瞬态的电压变化、电火花干扰等,若无充分的防护,CAN接口容易损坏。
 
3、宽泛的温度适应性:直流桩一般安装在空旷的室外,国内南北方的室外温度可达-35℃~+45℃,同时桩内大功率充电机工作时会给周边辐射大量的热量,综合考量环境温度和直流桩工作与否的状态,桩内的温度变化范围预计可达-35℃~+70℃,对各个桩内部件而言,都是严苛的考验,通信模块需能胜任。
 
4、低故障率:直流桩承担着给电动汽车续航的重任,同时大都安装在高速公路、空旷的野外等环境,出故障后的直接损失和维护成本都比较高,要求包括隔离模块在内的各部件高可靠、低故障,保证充电桩持久稳定的为顾客服务。
结合桩内各子系统的供电应用,CAN、RS485/232的通信方案如所示。
图 3 直流桩上的电源、CAN、RS485/232隔离应用解决方案
 
ZLG的CTM系列CAN隔离、RSM系列RS485、RS232隔离可轻松应付上述需求,高共模抑制性能、模块化设计,帮助用户快速实现功能,同时满足直流桩的复杂的电磁、温度环境。如CTM1051KT,内部集成新一代技术的隔离DC-DC,整个模块的隔离电压高达3500VDC,允许工作的温度范围支持-40~105℃。
图 4 RSM隔离CAN模块
图 5 隔离RS485收发模块
三、直流桩上的CAN口扩展解决方案
在类似一桩多充等需要较多CAN接口的应用中,主控系统的CAN接口可能不够用,此时需通过外设、从MCU等方式来外壳CAN应用。对此,CSM100L系列嵌入式UART转CAN模块可提供理想的解决方案。CSM100L的UART和CAN之间具备2500VDC的电气隔离,小体积模块化设计,CAN口符合ISO11898标准,支持5K~1Mbps的速率,通过操作UART即可跟CAN设备通信,如图 6 嵌入式UART转CAN所示。
图 6 嵌入式UART转CAN
直流桩内部通信接口的设计主要考虑的是抗电磁干扰、宽温度范围、及常时间工作的可靠性,性能和质量是最重要的考量因素,推荐采用一体化的接口隔离模块,再搭配合理的电源隔离方案,有效帮助用户设计出高可靠的直流桩产品。
图 7 工业级隔离AC-DC电源
 
关键字:直流  充电桩  电源  CAN  RS485  RS232  隔离应用 编辑:杜红卫 引用地址:直流充电桩上电源、CAN、RS485、RS232的隔离应用

上一篇:雅特生科技推出适用于超大规模/开放计算服务器的1600W电源
下一篇:恩智浦宣布出售标准产品业务

推荐阅读最新更新时间:2023-10-12 22:56

开关电源的测量中安全性解决方案
前言   电源几乎对于每种外接电源的电子产品都必不可少,开关电源系统(SMPS)已成为数字计算、网络、通信系统中的主流结构。开关电源的性能(或者故障)就可能对一个昂贵的大型系统产生重要影响。   要确保即将实现的SMPS设计可靠性、稳定性、兼容性、安全性,测量是唯一的办法。SMPS测量分为三个主要部分:有源器件测量、无源器件测量(主要是磁性元件)以及电源质量测试。有些测量可能要面对浮动电压和强电流;有些测量需要大量数学分析,才能得到有意义的结果。电源测量可能很复杂,特别是开关电源系统测量中安全技术为引人注目什么呐?应先从当今开关电源(SMPS)技术发展趋势与开关电源没计中的挑战说起。   开关电源技术发展趋势的特
[测试测量]
开关<font color='red'>电源</font>的测量中安全性解决方案
LED灯具驱动电源设计经验
LED灯具要普及,不但需要大幅度降低成本,更需要解决能效和可靠性的难题,如何解决这些难题,PowerIntegrations市场营销副总裁DougBailey分享了高效高可靠LED灯具设计的五点忠告。 一、不要使用双极型功率器件 DougBailey指出由于双极型功率器件比MOSFET便宜,一般是2美分左右一个,所以一些设计师为了降低LED驱动成本而使用双极型功率器件,这样会严重影响电路的可靠性,因为随着LED驱动电路板温度的提升,双极型器件的有效工作范围会迅速缩小,这样会导致器件在温度上升时故障从而影响LED灯具的可靠性,正确的做法是要选用MOSFET器件,MOSFET器件的使用寿命要远远长于双极型器件。 二、MOSFET
[电源管理]
罗姆开发出车载用超小型高效电源IC
新 系列产品 通过内置相位补偿电路和反馈电阻,与一般的电源 IC 相比,可大幅削减外置部件数,有助于车载设备的小型化,并减轻设计负担。 本产品于2013年4月开始出售样品(样品价格:300日元),于2013年7月份开始暂以月产20万个的规模投入量产。预计前期工序的生产基地为 ROHM Hamamatsu Co., Ltd.(日本静冈县),后期工序的生产基地为 ROHM Electronics Philippines, Inc.(菲律宾)。 近年来,随着电动汽车和 混合动力车 的普及以及汽车的电子化的发展,微控制器和存储器的搭载数量不断增加。作为这些部件的电力供给源的电源IC一般使用 LDO 稳压器 ,但一直
[汽车电子]
罗姆开发出车载用超小型高效<font color='red'>电源</font>IC
基于STM32控制直流电机加减速正反转proteus仿真设计
本设计: 基于STM32控制直流电机加减速正反转proteus仿真设计(程序+仿真+设计报告+讲解视频) 仿真:proteus8.9 程序编译器:keil 5 编程语言:C语言 编号C0011 功能说明: 本设计由STM32F103、L298N电机驱动电路、按键电路组成。 1.通过按键可以控制电机,正转、反转、加速、减速、停止。 2.档位分4档,并且可以通过按键顺序正转、反转、加速、减速、停止。 3.档位可以代码自定义。 附赠相关论文,根据实物写的,与仿真功能基本一致。也有与仿真一致的设计报告。 仿真图(提供源文件): 源程序(提供源文件): 以下为部分程序: int main(void) { delay_init(
[单片机]
基于STM32控制<font color='red'>直流</font>电机加减速正反转proteus仿真设计
基于自然直流选择性的漏电保护的研究
    选择性漏电保护是保证煤矿井下安全供电的3大保护(过流保护、漏电保护和保护接地)之一,是防止人身触电的重要保护措施 。     本文在现有选择性漏电保护原理 的基础上,针对两分支电网单相漏电的情况,从理论上对数学模型进行了进一步的分析,并介绍了以计算机为核心的简单实施方案。     我国井下低压电网的中性点全部为不接地方式,选择性漏电保护装置主要采用零序电流型、零序功率方向型原理,零序电流型是利用故障支路零序电流大于任一支路自身的零序电流的特点实现选择性。它需要一定量的零序电流才能正确选线;零序功率方向型是通过比较各支路Io与Uo相位选出故障支路并切断该支路 ,而在有消弧线圈补偿的电网中,这些特征已不复存在,流过
[电源管理]
基于自然<font color='red'>直流</font>选择性的漏电保护的研究
研究雷达天线电源故障检测电路的设计
引言   随着相控阵天线在雷达中的广泛使用,天线电源的故障检测变得越来越重要,相控阵天线的电源规模往往和收发(T/R)组件的多少成正比,当T/R组件多达上百个时,电源系统相对庞大,电源故障检测也较复杂,电源故障将直接导致T/R组件工作异常,因此设计一个完善的电源故障检测电路非常重要,它能实时对电源进行监测,及时发现故障,将故障定位到LRU,指导维修人员进行换件维修。   电源故障检测电路由硬件和软件两大部分组成,硬件组成框图如图1所示。信号调理电路对输入的35路电源检测信号进行滤波、分压及阻抗匹配,然后经过多路复用器(MUX)选择进入模数变换器(A/D),变换成数字量,单片机读入该数字量,与规定的上下限进行比较,判断该电压是否
[测试测量]
基于GSM、GPS及CAN总线的列车行程测量系统
  引言   随着铁路运输向高速度、高密度方向发展,安全工作将更加重要。一旦发生事故,不仅中断行车、打乱正常运行秩序,在经济上造成严重的损失,而且还会在社会上产生不良影响。为保证列车快速、安全、舒适、高效地在高速线上运行,对铁路列车进行及时的检修是非常重要的。列车检修周期主要以列车行驶的里程为参考,所以及时准确地记录列车的行驶里程是保证列车安全运行的关键。以往对列车各车厢行驶里程的记录是采用人工记录计算机存储的方式,有时由于工作人员的疏忽,就可能造成记录表丢失或漏记现象,这样就会使列车的实际行驶里程与记录的行驶里程不符,从而使列车不能得到及时地检修,为列车的安全运行造成了隐患。因此,研制一个能够自动记录列车行驶里程的网络系统
[单片机]
开关电源原理与设计(连载60)开关电源变压器铁芯磁滞回线测量-part2
从原理上来说,只有RC积分电路输出电压的特性与磁场强度取样电路输出电压的特性(速率)基本一致的时候,磁滞回线的显示失真才会最小。那么u1电压的变化特性与u2电压的变化特性是否基本一致呢?为了简单和便于分析,这里我们把输入电压看成是交流脉冲方波,但对于正弦波电压还是同样有效。 如果忽略取样电阻R1两端的电压降u1,则加到变压器两端的电压e1为: e1 ≈L1di1/dt (2-37) 由此可以求得流过变压器初级线圈的励磁电流为: i1 = = +i1(0) ——输入电压为方波 (2-38) (2-38)式中,e1为加到变压器T2初级线圈两端的电压(这里为方波),或T1
[电源管理]
小广播
热门活动
换一批
更多
最新电源管理文章
更多精选电路图
换一换 更多 相关热搜器件
更多每日新闻
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved