如今,新的复杂业务模型正采用基于云的平台,通过省去内部数据中心,以提高效率,减少资本支出(CAPEX)和运营支出(OPEX)。采用云存储和基于云的服务代表一个真正的大趋势,近几年不仅在大型企业越来越流行,而且在中小型企业(SMB)中所占比例也显著增加。除了少数企业出于性能、可靠性或网络和数据安全原因而需要保留内部数据中心,大多数企业将持续这趋势。
云存储市场规模将以23.7%的复合年增长率(CAGR)增长,预计到2022年将达到889.1亿美元。据估计,数据中心和基于云的存储消耗当今总发电量的3%,随着对云存储和数据中心的需求以如此快的速度增长,预计能源需求在短期内将显著增加。由于能源使用对环境的影响和节省数百万美元运营成本的潜力,数据中心设计人员面临挑战,要通过采用先进的配电和管理方案来提高能效,同时保持或减小外形。在这领域,即使提高最小百分比的能效,也相当于节省大量宝贵的能源和成本。
一个重要的目标是降低电源使用效率(PUE)比率。 为实现这一目标,需要技术来获得更高的能效、准确性和可靠性。 这与配电系统(PDU)、母线槽、不间断电源(UPS)以及保护它们的电路。
由于数据中心和基于云的系统的功率密度不断提高,对过流保护的要求比以往任何时候都更具挑战性,并且已成为所有保护考虑因素中最关键的因素之一。对更高的准确性、可靠性、安全性(例如满足IEC 62368标准)和具有先进诊断的快速响应的需求正越来越普遍。传统保险丝由于响应迟缓、缺乏诊断或故障报告不能满足这些要求。
将电子保险丝(eFuse)与同等传统保险丝例如熔融熔断器和聚合物正温系数(PPTC)可复位保险丝的规格和性能进行比较表明,eFuse具有非常低的响应时间和浪涌电流控制,在发生短路时大大减小电流尖峰。
Melting Fuse:熔断熔丝
PTC:正温系数
DC Supply:直流电源
Spike in Current:电流尖峰
图1.eFuse对比传统保险丝
由于这些原因和近年新技术的出现,在可行的情况下,设计人员试图将传统的保险丝替换为热插拔控制器和外部FET,或者替换为eFuse。eFuse含集成控制器的功率MOSFET和许多内置保护功能包括过压、过流对电池短路和热保护以及诊断功能如电源自检(power good)、电流监测和故障/启用。另一方面,热插拔控制器使用外部FET而不是集成的FET,且通常用于较高电流应用。
Pass-transistor + Control circuit:导通管 + 控制电路
Current Monitor:电流监测
Load diagnostics:负载诊断
Load Control:负载控制
FAULT ENABLE:故障启用
Overvoltage Protection:过压保护
Immunity to power supply glitches/drift:不受电源故障/漂移的影响
Short to Battery Protection:对电池短路保护
Overcurrent & thermal Protection:过流及过热保护
Intimate thermal monitoring & unconditional safety:密切热监控和无条件安全
Short to Ground Protection:对地短路保护
Reverse Current Protection:反向电流保护
Polarity reversal protection:极性反转保护
Reverse bleed prevention:避免反流
Reverse Current Protection:反向电流保护
图2. eFuse的功能
两种技术的主要区别在于eFuse能够实时跟踪内置MOSFET芯片温度和电流,并能迅速采取纠正措施。 尽管如此,热插拔控制器能通过放大主MOSFET来提高电流,在超过100A的高电流应用中仍会流行。 而eFuse的持续电流承受能力从1A到50A(取决于导通Rds(on)、封装和边界条件),有望在服务器和云存储应用中普及。
图3.eFuse和热插拔控制器
eFuse现在被应用于各种云应用中,包括用作存储设备的企业硬盘驱动器(HDD)和固态硬盘(SSD)、存储系统中的背板保护、服务器和热插拔风扇。每一应用都提出了不同的挑战。在驱动电感和电容负载时产生的电应力、热插拔和短路产生的应力,使得难以保证在安全工作区(SOA)运行,并且在满足严格的能效要求的同时实现功能安全。一些关键应用和相关挑战如下:
12V Main supply:12 V主电源
Internet Connectivity:互联网联接
Data Management:数据管理
Colocation Inter Connectivity:托管间联接
Storage Management:存储管理
Main Fuse:主保险丝
Aux eFuse: 辅助eFuse Fans:风扇
Server Racks:服务器机架
Storage Racks:存储机架
Backplane:背板
Fast Switch:快速开关
Storage System (NAS):存储系统 (网络附加存储NAS)
Blade Server Electronics:刀片服务器电子
图4. eFuse用于云应用
适用于所有应用的快速、准确的过流保护:传统方案如熔断保险丝和PPTC的耐受性非常差,响应时间和跳闸时间从几百毫秒到几秒不等,具体取决于短路事件的类型。 同时,大多数eFuse都基于编程的电流极限值在几微秒(<5µs)内响应短路事件,并将电流保持在编程值,直到芯片温度超过热关断阈值为止。
热插拔风扇和存储系统:由于与这些应用相关的电机或输出电容较大,在启动过程中可能会出现很大的涌流。然而,在输出端采用可控制和可编程转换率的eFuse有助于减少大浪涌电流,从而保护系统。特别是对于风扇来说,有和没有eFuse的运行对浪涌电流有很大的影响。有eFuse,浪涌电流大大降低,从而保护下游电路。
对电源的过压保护:由于电源故障或连接到过流保护输入的DC-DC转换器故障,所有下游电路都可能承受过压应力,这些电路的耐压可能没那么高。 有利的是,eFuse内置过压保护功能,可将器件的输出钳位到一定的安全电压水平,即使输入电压远高于工作电压。 因此保护了下游电路免受过压应力的影响。 在许多情况下,受保护的电路耐受非常低的过电压应力。 因此,过压保护不仅要可靠,还要非常快。 对于eFuse,检测和激活内部钳位的时间约<5µs。
安森美半导体开发出从3V到12V的多种eFuse,支持从1A到12A的连续电流。 最新的器件是12V eFuse系列NIS5232、NIS5820、NIS5020和NIS5021,分别支持4A、8A、10A和12A,用于需要过流、过热、过压和浪涌电流保护的应用,并能通过通用输入输出(GPIO)报告故障及禁用输出。在不断减小整体设计尺寸的压力下,DFN10(3mm x 3mm)和DFN10(4mm x 4mm)封装有助于应对挑战和支援紧凑的布板。
总结
由于提高电源使用效率(PUE)比率日增的压力和愿望,数据中心和云服务器的功率密度不断增加,以及安全标准的推行,对过流保护器件的负荷在改变并变得更加复杂。eFuse具备高精度、快速响应时间、高可靠性、故障报告能力和诊断特性,有助于解决云应用、工业、汽车和电信设备过流保护的挑战。
上一篇:村田推出为CPU/通信系统负载点用DC-DC模块
下一篇:电力革命引发锂离子电池不断进步
推荐阅读最新更新时间:2024-11-04 18:52
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC
- LT1170HVCQ、5V/5A 反激式转换器的典型应用
- 带有两张ic卡功能的ESP8266名片
- 【训练营】物联网时钟+1491048A
- 使用 Analog Devices 的 LT1317BCMS8 的参考设计
- 使用 NXP Semiconductors 的 TFA9879 的参考设计
- 数字温度计的设计
- 使用 Analog Devices 的 LTC1439CG 的参考设计
- TCR5SB33、200mA、3.3V输出电压CMOS低压降稳压器的典型应用
- 使用 Analog Devices 的 LTC1261LCS8-4.5 的参考设计
- 使用 Analog Devices 的 LTC2461 的参考设计