应用电路板的多轨电源设计如何精巧布局

发布者:EEWorld资讯最新更新时间:2021-02-05 来源: EEWORLD作者: ADI公司 Ching Man,现场应用工程师关键字:应用电路板  ADI 手机看文章 扫描二维码
随时随地手机看文章

简介:工程师在不断发展的时代所面临的挑战

 

电源设计可以分为三个阶段:(A)设计策略和IC选择,(b)原理图设计、仿真和测试,以及(c)器件布局和布线。在(a)设计和(b)仿真阶段投入时间可以证明设计概念的有效性,但真正测试时,需要将所有一切组合在一起,在测试台上测试。在本文中,我们将直接跳到步骤(c),因为目前已有大量资料介绍ADI的模拟和设计电源工具,都可免费下载,例如LTpowerPlanner®、LTpowerCad®、LTspice®和LTpowerPlay®。此专题的第一部分主要介绍(a)策略。

 

此专题分两部分讨论,本文是第二部分,主要介绍在设计多轨电源时可能会忽略的一些问题。第一部分着重介绍策略和拓扑,本文则重点讨论功率预算和电路板布局的细节。由于许多应用电路板需要多个电源轨道,所以这个分两部分介绍的专题详细介绍多电源电路板解决方案。目标是通过合理的器件定位和路由来实现高质量的初始设计,以重点突出一些功率预算和路由技巧。

 

在电源设计中,精心的布局和布线对于能否实现出色设计至关重要,要为尺寸、精度、效率留出足够空间,以避免在生产中出现问题。我们可以利用多年的测试经验,以及布局工程师具备的专业知识,最终完成电路板生产。

 

精心的设计的效率

 

设计从图纸上看起来可能毫无问题(也就是说,从原理图角度),甚至在模拟期间也没有任何问题,但真正的测试其实是在布局、PCB制造,以及通过载入电路实施原型制作应力测试之后。这部分使用真实的设计示例,介绍一些技巧来帮助避开陷阱。我们将介绍几个重要概念,以帮助避开设计缺陷和其他陷阱,以免未来需要重新设计和/或重新制作PCB。图1显示在没有进行细致测试和余量分析的情况下,在设计进入生产之后会如何造成成本急速上涨。

 

               image.png

图1.生产的电路板出现问题时,成本可能急速上涨

 

功率预算

 

您需要注意在正常情况下按预期运行,但在全速模式或不稳定数据开始出现时(已排除噪声和干扰之后)不能按预期运行的系统。

 

退出级联阶段时,要避免限流情况。图2所示为一个典型的级联应用:(A) 显示由产生3.3 V电源,电流最大500 mA的ADP5304降压稳压器(PSU1)构成的设计。为了提高效率,设计人员应分接3.3 V电轨,而不是5 V输入电源。3.3 V输出被进一步切断,以为PSU2 (LT1965)供电,这款LDO稳压器用于进一步将电压降低至2.5 V,且按照板载2.5 V电路和IC的要求,将最大输出电流限制在1.1 A。

 

这种系统存在一些很典型的隐藏问题。它在正常情况下能够正常运行。但是,当系统初始化并开始全速运行时——例如,当微处理器和/或ADC开始高速采样时——问题就出现了。由于没有稳压器能在输出端生成高于输入端的电压,在图2a中,用于为合并电路VOUT1和VOUT2供电的VOUT1最大功率(P = V × I)为3.3 V × 0.5 A = 1.65 W。得出此数值的前提是效率为100%,但是因为供电过程中会出现损耗,所以实际功率要低于该数值。假定2.5 V电源轨道的最大可用功率为2.75 W。如果电路试图获取这么多的功率,但这种要求得不到满足,就会在PSU1开始限流时出现不规律行为。电流可能由于PSU1而开始限流,更糟的是,有些控制器因过流完全关断。

 

如果图2a是在成功排除故障后实施,则可能需要更高功率的控制器。最理想的情况是使用与引脚兼容、电流更高的器件进行替换;最糟糕的情况下,则需要完全重新设计和制造PCB。如果能在概念设计阶段开始之前考虑功率预算,则可以避免潜在的项目计划延迟(参见图1)。

 

在考虑这一点的情况下,先创建真实的功率预算,然后选择控制器。包括您所需的所有电源电轨:2.5 V、3.3 V、5 V等。包括所有会消耗每个电轨功率的上拉电阻、离散器件和IC。使用这些值反向工作,以如图2b所示,估算您需要的电源。使用电力树系统设计工具,例如LTpowerPlanner(图3)来轻松创建支持所需的功率预算的电力树。

 

image.png image.png

 

布局和布线

 

正确的布局和布线可以避免因错误的走线宽度、错误的通孔、引脚(连接器)数量不足、错误的接触点大小等导致轨道被烧毁,进而引发电流限制。下面章节介绍了一些值得注意的地方,也提供几个PCB设计技巧。

 

连接器和引脚接头

 

将图2中所示的示例的总电流扩展至17 A,那么设计人员必须考虑引脚的电流处理接触能力,如图4所示。一般来说,引脚或接触点的载流能力受几个因素影响,例如引脚的大小(接触面积)、金属成分等。直径为1.1 mm1的典型过孔凸式连接引脚的电流约为3 A。如果需要17 A,那么应确保您的设计具有足够多的引脚,足以处理总体的载流容量。这可以通过增大每个导体(或触点)的载流能力来轻松实现,并保留一些安全裕度,使其载流能力超过PCB电路的总电流消耗。

 

在本例中,要实现17 A需要6个引脚(且具备1A余量)。VCC和GND一共需要12个引脚。要减少触点个数,可以考虑使用电源插座或更大的触点。

 

布线

 

使用可用的线上PCB工具来帮助确定布局的电流能力。一盎司电轨宽度为1.27 mm的铜质PCB的载流能力约为3 A,电轨宽度为3 mm时,载流能力约为5 A。还要留出一些余量,所以20 A的电轨的宽度需要达到19 mm(约20 mm)(请注意,本例未考虑温度升高带来的影响)。从图4可以看出,因为受PSU和系统电路的空间限制,无法实现20 mm电轨宽度。要解决这个问题,一个简单的解决方案是使用多层PCB。将布线宽度降低到(例如)3 mm,并将这些布线复制到PCB中的所有层上,以确保(所有层中的)布线的总和能够达到至少20 A的载流能力。 

 

过孔和连接

 

图5显示一个过孔示例,该过孔正在连接控制器的PCB的多个电源层。如果您选择1 A过孔,但需要2 A电流,那么电轨宽度必须能够携带2 A的电流,且过孔连接也要能够处理这个电流。图5所示的示例至少需要两个过孔(如果空间允许,最好是三个),用于将电流连接至电源层。这个问题经常被忽略,一般只使用一个过孔来进行连接。连接完成后,这个过孔会作为保险丝使用,它会熔断,并断开与相邻层的电源连接。设计不良的过孔后期很难改善和解决,因为熔断的过孔很难注意到,或者被其他器件遮住。

 

image.png 

请注意关于过孔和PCB电轨的下列参数:电轨宽度、过孔尺寸和电气参数受几个因素影响,例如PCB涂层、路由层、工作温度等,这些因素最终会影响载流能力。以前的PCB设计技巧没有考虑这些依赖关系,但是,设计人员在确定布局参数时,需要注意到这些。目前许多PCB电轨/过孔计算器都可在线使用。设计人员在完成原理图设计后,最好向PCB制造商或布局工程师咨询这些细节。   

 

有许多因素会导致生热,例如外壳、气流等,但本节主要讲述外露的焊盘。带有外露焊盘的控制器,例如LTC3533、ADP5304、ADP2386、ADP5054等,如果正确连接至电路板,其热阻会更低。一般来说,如果控制器IC的功率MOSFET是置于裸片之中(即是整片式的),该IC的焊盘通常外露,以便散热。如果转换器IC使用外部功率MOSFET运行(为控制器IC),那么控制IC通常无需要使用外露焊盘,因为它的主要制热源(功率MOSFET)本身就在IC外部。

 

通常,这些外露的焊盘必须焊接到PCB接地板上才有效。根据IC的不同,也有一些例外,有些控制器会指明,它们可以连接至隔离的焊盘PCB区域,以作为散热器进行散热。如果不确定,请参阅有关部件的数据表。

 

当您将外露的焊盘连接到PCB平面或隔离区域时,(a)确保将这些孔(许多排成阵列)连接到地平面以进行散热(热传递)。对于多层PCB接地层,建议利用过孔将焊盘下方所有层上的接地层连在一起。如需更多信息,请参阅“散热设计基础”教程 MT-093、2AN136:“非隔离开关电源的PCB布局考量,”3,以及AN139:“电源布局和EMI。”4

 

请注意,关于外露焊盘的讨论是与控制器相关。在其他IC中使用外露焊盘可能需要使用极为不同的处理方法。

 

结论与汇总

 

要设计低噪声、不会因为电轨或过孔烧毁而影响系统电路的电源,从成本、效率、效率和PCB面积大小各方面来说都是一项挑战。本文强调了一些设计人员可能会忽略的地方,例如使用功率预算分析来构建电力树,以支持所有的后端负载。

 

原理图和模拟只是设计的第一步,之后是谨慎的器件定位和路由技术。过孔、电轨和载流能力都必须符合要求,并接受评估。如果接口位置存在开关噪声,或者开关噪声到达IC的功率引脚,那么系统电路会失常,且难以隔离并排除故障。

 


关键字:应用电路板  ADI 引用地址:应用电路板的多轨电源设计如何精巧布局

上一篇:如何进行应用电路板的多轨电源设计
下一篇:ST推出USB Type-C Power Delivery,可支持可编程电源

推荐阅读最新更新时间:2024-11-05 02:43

制作RF设计原型的更好方法--使用X-Microwave
制作RF设计原型的更好方法--使用X-Microwave 对于RF设计,典型的原型制作经验是这样的:为信号链中的每个元器件购买评估板,使用RF线缆将这些板串在一起,粗略估计适当布局的信号链要是构建在单个生产PCB上会有怎样的性能。由于评估板PCB走线较长,并且涉及到大量布线和连接器,因此这种方法会产生相当大的插入损耗。由此得到的原型上线测试过程也可能令人沮丧且耗时,因为每个评估板都有特定的电压要求。RF器件需要多个具有特定电源轨上电时序电压的情况也很常见,如果违反时序要求,器件可能会损坏。单单电源和RF线就可能造成巨大麻烦,如有电路板需要数字控制,事情会变得更加复杂。如果整个系统在首次开启时没能像预期的那样正常工作,那么调试很
[模拟电子]
制作RF设计原型的更好方法--使用X-Microwave
中国仪控产业蕴含巨大商机 ADI DSP助跑本土军团
  虽然在风头上,仪器仪表及工业自动控制(简称仪控)产业似乎不如3G、新潮有趣的消费电子等话题那样抓人眼球、受媒体热捧,但通过以下一些数据,我们就可以看到,该产业在中国同样蕴藏着巨大的市场机会,并且在产品的功能和技术特性要求方面随着需求的变化呈现出新的特点。     众所周知,中国政府正在逐步落实的4万亿投资计划中,很大一部分是关于加大基础设施建设投入的政策,其中重点包括电力、铁路、机场、城市地铁等系统的建设。例如,国家电网和南方电网分别公布了上调2009、2010两年投资额度的规划。总体来看,预计两大电网公司在明后两年全国范围内年电网投资额度将达到4650亿元,比原规划的3350亿元上调了38%,这将为输、配电设备、保护设备及其
[嵌入式]
中国仪控产业蕴含巨大商机 <font color='red'>ADI</font> DSP助跑本土军团
ADI公司的DSP为电动和混合动力汽车产生内外发动机声音
Analog Devices, Inc. ( ADI )今天推出一款嵌入式系统,用于为电动(EV)和混合动力汽车(HEV)产生发动机声音。通过采用A DSP -BF706数字信号处理器和电动汽车警示音系统(EVWSS)固件,北美和全球其他地区的汽车制造商能够满足电动和混合动力汽车低速行驶时对外部发动机声音的未来安全规范要求。      ADI公司的DSP为电动和混合动力汽车产生内外发动机声音    查看EVWSS产品页面:http://www.analog.com/pr0717/evwss    在www.analog.com/cn/srf提交申请,以下载EVWSS固件。请在软件申请表的其他备注字段输入EVWSS.2.0.
[嵌入式]
技术文章—高性能图像传感器参考设计的核心集成与协作
色散谱应用中的图像传感需要超低噪声和高比特率的线性阵列图像传感器,以实现高灵敏度和高速测量。为了降低探测器的暗噪声并进一步提高测量灵敏度,需要一个热电冷却器(TEC)。为达到这些要求,还需要高性能电子器件来与传感器接口。从传感器采样数据需要具有低噪声、且快速建立时间的放大器和低噪声精密模数转换器(ADC)。TEC需要精密电流控制和限压,以便精确控制温度。电源管理电子器件必须能够提供TEC所需的高功率,以及采样电路所需的低噪声。最后,良好的PCB布局对于避免大功率电源的开关信号对精密采样电子器件的磁耦合或传导耦合干扰至关重要。 利用分立电子器件设计一个系统来与这些复杂的高性能传感器连接,这在过去一直是一个挑战,需要仔细权衡尺寸、
[传感器]
技术文章—高性能图像传感器参考设计的核心集成与协作
ADI收购宽带GaAs和GaN放大器专业公司OneTree Microdevices
Analog Devices, Inc. (NASDAQ:ADI)今日宣布收购位于美国加利福尼亚州Santa Rosa的OneTree Microdevices公司。ADI公司是业界领先的混合信号解决方案供应商,提供从数据转换器、时钟到控制/电源调节等电缆接入解决方案。 OneTree Microdevices的GaAs和GaN放大器具有业内最佳的线性度、输出功率和效率,收购该公司及产品组合后,使ADI公司能够支持下一代电缆接入网络的整个信号链。 该笔交易的财务条款未予披露。 Analog Devices和OneTree Microdevices强强联手,将占据独特优势地位,有助于应对当前有线电视运营商面临的带宽
[模拟电子]
<font color='red'>ADI</font>收购宽带GaAs和GaN放大器专业公司OneTree Microdevices
如何在拥挤的电路板上实现低EMI的高效电源设计?
有限且不断缩小的电路板空间、紧张的设计周期以及严格的电磁干扰(EMI)规范(例如CISPR 32和CISPR 25)这些限制因素,都导致获得具有高效率和良好热性能电源的难度很大。在整个设计周期中,电源设计通常基本处于设计过程的最后阶段,设计人员需要努力将复杂的电源挤进更紧凑的空间,这使问题变得更加复杂,非常令人沮丧。为了按时完成设计,只能在性能方面做些让步,把问题丢给测试和验证环节去处理。简单、高性能和解决方案尺寸三个考虑因素通常相互冲突:只能优先考虑一两个,而放弃第三个,尤其当设计期限临近时。牺牲一些性能变得司空见惯;其实不应该是这样的。 本文首先概述了在复杂的电子系统中电源带来的严重问题:即EMI,通常简称为噪声。电源会产
[电源管理]
如何在拥挤的<font color='red'>电路板</font>上实现低EMI的高效电源设计?
ADI推出ADuM4135隔离式IGBT栅极驱动器
Analog Devices, Inc. (ADI),全球领先的高性能信号处理解决方案供应商,最近推出 ADuM4135 隔离式IGBT栅极驱动器,其可提高工业电机控制应用的电机能效、可靠性和系统控制性能。 单封装ADuM4135集成ADI公司备受赞誉的 i Coupler 数字隔离器技术,通过成熟的电流隔离技术来确保安全性和可靠性,同时实现业界最佳的特性组合 CMTI(共模瞬变抗扰度)为100 kV/ s且传播延迟为50 ns(典型值)。 利用ADuM4135,客户产品将符合IE3和IE4电机效率标准,从而与电机控制和电网逆变器均转向更高频率切换技术的业界趋势保持一致。 安全特性包括集成米勒箝位和去饱和检测。 下载
[电源管理]
ADI公司如何让IO-LINK和工业以太网在智能工厂车间通信
本系列的第二篇博文介绍了如何使用IO-Link®从站收发器设计与网络无关的工业现场设备(传感器/执行器)。下一步是设计IO-Link主站,将这些设备与工业网络(或现场总线)连接起来,把工厂车间的过程数据传输到可编程逻辑控制器(PLC),如图1所示。这篇博文探讨了ADI公司的工业通信解决方案,这些解决方案可以加速灵活IO-Link主站的设计进展,该主站可支持智能现场设备使用较为热门的工业以太网协议进行通信。如果您还未阅读本系列的上一篇博文,请点击此处。 图1. IO-Link从站通过IO-Link主站连接到工业以太网 选择灵活的IO-LINK主站收发器 IO-Link主站接收传感器的过程值并将其聚合,然后传输到更高级
[物联网]
<font color='red'>ADI</font>公司如何让IO-LINK和工业以太网在智能工厂车间通信
小广播
最新电源管理文章
换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved