使用氮化镓(GaN)提高电源效率

发布者:EE小广播最新更新时间:2021-12-13 来源: EEWORLD作者: Doug Bailey,Power Integrations市场营销副总裁关键字:氮化镓  GaN  电源效率  PI  反激式  AC  DC  电源 手机看文章 扫描二维码
随时随地手机看文章

如今,越来越多的设计者在各种应用中使用基于氮化镓反激式AC/DC电源。氮化镓之所以很重要,是由于其有助于提高功率晶体管的效率,从而减小电源尺寸,降低工作温度。

 

晶体管无论是由硅还是由氮化镓制成,都不是理想的器件,使其效率下降的两个主要因素(在一个简化模型中):一个是串联阻抗,称为RDS(ON),另一个是并联电容,称为COSS。这两个晶体管参数限制了电源的性能。氮化镓是一种新技术,设计者可以用它来降低由于晶体管特性的不同而对电源性能产生的影响。在所有晶体管中,随着RDS(ON)的减小,管芯尺寸会增加,这会导致寄生COSS也随之增加。在氮化镓晶体管中,COSS的增加与RDS(ON)的减少之比要低一个数量级。


RDS(ON) 是开关接通时的电阻,它造成导通损耗。COSS的功率损耗等于CV2/2(见图1)。当晶体管导通时,COSS通过RDS(ON)放电,导致导通损耗。导通损耗等于(CV2/2) x f,其中f是开关频率。用氮化镓开关替换硅开关会降低RDS(ON)和COSS的值,能够设计出更高效的电源,或实现在更高频率下工作,而对效率的影响较小,这有助于缩小变压器的尺寸。


 image.png


图1:初级功率开关中的寄生电容


氮化镓如何降低导通和开关损耗


我们谈到了增加晶体管尺寸的后果:随着晶体管变大,RDS(ON)会减小。这没有问题。然而,随着晶体管变大,(显然)面积会更大,因此寄生电容COSS也会增加。这不是好事。最佳的晶体管尺寸应使RDS(ON)和COSS的组合最小化。该点通常位于降低RDS(ON)损耗的曲线与增加COSS损耗的曲线的相交处。当曲线相交时,电阻和电容损耗的组合最低(见图2)。


image.png

图2:硅MOSFET中的功率损耗相对于器件尺寸的简化示意图


除了总RDS(ON)之外,还有一个名为“特定RDS(ON)”的参数,该参数将总导通电阻与管芯单位面积相关联。与硅相比,氮化镓具有非常低的特定RDS(ON),因此开关更小,并且COSS也更低。这意味着更小的氮化镓器件可以处理与更大的硅器件相同的功率水平。

  

image.png

图3:相较于硅MOSFET,氮化镓器件的总损耗更低 


较低的RDS(ON)和较小的COSS损耗相结合,可以使用氮化镓设计出更高效率的电源,从而减少散热。所需耗散热量的降低也有助于缩小电源尺寸。频率是设计者可以用来减小尺寸和优化使用氮化镓的电源性能的另一个手段。由于氮化镓本质上比硅更高效,因此有可能提高基于氮化镓的电源的开关频率。虽然这会增加损耗,但它们仍会显著低于硅MOSFET的损耗,并减小变压器的尺寸。 


变压器结构的实际限制和电路中的寄生元件限制了开关频率可以有效地提高到何种程度。在实际设计中,对于额定功率为≤100W的基于氮化镓的反激式适配器来说,能够提供效率、尺寸和低成本的最佳组合的开关频率可以低于100kHz。对于氮化镓而言,限制因素不是开关速度。随着COSS的大幅减小,设计者有了更大的灵活性,可以针对损耗优化开关频率,达成一个卓越的解决方案。


利用氮化镓提高电源效率


电源效率的提高究竟是如何实现的呢?举例来说,对于一个使用硅MOSFET的65W反激式适配器,其效率曲线在10%负载下处于约85%的范围内,在满载时将达到90%以上(见图4)。而一个使用Power Integrations (PI)公司基于氮化镓的InnoSwitch™器件的65W反激式适配器,其效率在10%负载下将约为88%。在满载时,这款氮化镓设计的效率将达到约94%。假如用氮化镓器件取代硅MOSFET,在整个负载范围内将可实现约3%的效率改进。

 

image.png

图4:碳化硅与氮化镓适配器在满载时的效率比较


效率提高3%相当于损耗减少至少35%。氮化镓设计的能耗更少,产生的热量减少35%。这一点非常重要,因为初级功率开关通常是传统电源中最热的元件。氮化镓的散热需求也会下降。电源体积将会更小,重量更轻,也更便携,并且由于元件的温度较低,电源的工作温度将更低,拥有更长的使用寿命。


如何使用氮化镓晶体管进行设计


在功率变换器设计中,分立的氮化镓晶体管不能用作硅器件的直接替代品。氮化镓晶体管的驱动更具挑战性,尤其是在驱动电路距晶体管有一定距离的情况下。氮化镓器件的导通速度非常快,如果没有精心优化的驱动电路,这可能会导致电磁干扰甚至破坏性振荡的严重问题。氮化镓器件通常是处于“常开”的状态,这对于功率开关来说并不理想,因此分立的氮化镓开关通常与一个共源共栅排列的低压硅晶体管搭配一起工作。


为了帮助客户实现可靠耐用的设计并加快产品上市时间,PI推出了InnoSwitch3产品系列。这些高度集成的反激式开关IC已内置用于氮化镓初级侧和次级侧同步整流管的控制器。InnoSwitch3 IC具有低空载功耗,并采用名为FluxLink™的高带宽通信技术,该技术使反馈信息可在安规隔离带之间传递,绝缘性能符合国际安全标准。

 

InnoSwitch3-PD是InnoSwitch3产品系列的最新成员,具有初级和次级控制器以及氮化镓初级开关。该器件可提供完整的USB PD和PPS接口功能,无需USB PD + PPS电源通常所需的微控制器。其他采用氮化镓的PI产品包括:采用数字控制并支持动态调整电源电压和电流的InnoSwitch3-Pro;名为InnoSwitch3-MX的多路输出版本;以及LED驱动器IC LYTSwitch™-6。

 

image.png

图5:InnoSwitch3集成解决方案利用氮化镓技术提供高性能反激式电源

并加快开发时间。


总结


氮化镓即将在市场大行其道。越来越多的应用,包括USB PD适配器、电视机、白色家电和LED照明,共超过60种不同的应用,已经在享受氮化镓带来的好处。当可以使用不超过100W的反激式AC/DC电源时,越来越多的设计者选择氮化镓来设计体积更小、重量更轻、工作温度更低、可靠性更高的电源。


关键字:氮化镓  GaN  电源效率  PI  反激式  AC  DC  电源 引用地址:使用氮化镓(GaN)提高电源效率

上一篇:ITECH再续节能回馈产品IT-M3900系列
下一篇:科索为其坚固可靠的 PJMA 系列新增一款功率为 300W 的电源

推荐阅读最新更新时间:2024-11-11 11:01

如何测量电源的纹波 纹波测量点和示波器要求
今天聊一聊如何测量电源的纹波。 1、纹波的测量点要求 纹波测量点要选择靠近负载的地方,例如CPU的供电管脚上的去耦电容上。 PDN是一个网络,主板上一个电源平面的不同的地方纹波是不一样的,建议选择最远,负载最大,环境最恶劣的地方。 如果一个电源网络同时给多个耗电大的IC供电,这几个大的IC电源管脚都需要测试纹波水平。 2、示波器要求 电源走线上有很多电容,寄生参数,形成了一个类似的低通滤波器,电源上包含的频率分量并不高,最多数十兆赫兹。 DC-DC电源的开关频率也只有几兆赫兹。如果只是想测量纹波水平,不考虑主板上的高频信号耦合到电源线上的噪声,只需要选择低带宽的示波器。 示波器上都有一个带宽抑制功能,可以把示波器带宽抑制到20
[测试测量]
如何测量<font color='red'>电源</font>的纹波 纹波测量点和示波器要求
DIY全解:自制随身电源
本文是电子发烧友fu-80 DIYer 自制的一款随身电源。通过以下介绍,希望能给大家点点灵感,大家一起DIY!   还在因为手机的续航问题而担心接不到重要电话或耽误工作么?那么自己学着做一个电源咯,即使你随身带不同品牌、不同型号不同接口的两部或者以上手机,也都是毫无压力滴。一个电源能解决你一直苦恼的续航问题,为生活带来莫大的方便,那你还犹豫什么呢?赶紧跟我们一起来DIY吧...    图 自制随身电源全貌 图 自制随身电源开关、接口图   现在的手机啊,屏幕越来越大,性能越来越好,越来越娱乐化,然后••••••为了薄如纸张,电池就越来越不经用了。为了能长时间使用手机,很多人都开始购买了第二块电池,但是往往也不够用,某些不能跟
[电源管理]
DIY全解:自制随身<font color='red'>电源</font>
单片机MQ-2烟雾检测+ADC0809 AD转换+lcd1602显示程序
单片机源程序如下: /*============================================================ // //程序编写:刘先生 接线:D0--D7接P0.0-P0.7 ST---P2.3 EOC--P2.2 OE---P2.1 CLK--P2.0 本程序源码只供学习参考,不得应用于商业用途,如有需要请联系作者。 =============================================================*/ #include reg52.H //器件配置文件 #include intr
[单片机]
单片机MQ-2烟雾检测+A<font color='red'>DC</font>0809 AD转换+lcd1602显示程序
郭浩中将于“第三代半导体论坛”剖析氮化镓在光电应用
半导体材料发展至今,先后经历了三次变革。第三代半导体材料主要是以碳化硅(SiC)、氮化镓(GaN)、氧化锌(ZnO)、金刚石、氮化铝(AlN)为代表的宽禁带(禁带宽度 Eg 2.3eV)的半导体材料。受益于车用、工业与通讯需求爆发,第三代半导体迎来了风口,已凭借自身的优势逐步应用在Mini/Micro-LED以及紫外LED领域。 为助力我国第三代半导体产业进一步发展,爱集微将于6月10日举行《后摩尔时代下第三代半导体的技术趋势》论坛,届时台湾交通大学郭浩中教授,美国电机电子工程学会会士,美国光学工程学会会士将在论坛将发表以《氮化镓在光电领域的应用前景》为主题的演讲,并从下四个角度展开: 1.氮化镓技术的优势 2.氮化镓在光电
[手机便携]
纳微氮化镓器件助力OPPO的新一代快充
Navitas Semiconductor 纳微半导体今日宣布,交付基于其GaNFast技术的第500万颗氮化镓功率IC芯片。7月24日,纳微半导体副总裁查莹杰先生,将第500万颗GaNFast氮化镓功率IC芯片,交到了OPPO副总裁、OPPO研究院院长刘畅先生的手中,表明了OPPO对纳微半导体GaNFast技术的肯定,以及新材料对电源领域二次革命的见证。 OPPO作为快充行业的先行者,一直引领着智能手机的快充市场,最早期的VOOC闪充“充电五分钟,通话两小时”深入人心,演进自SuperVOOC架构的125W 超级闪充更是把手机快充功率提到了史无前例的高度。技术创新无止境,现阶段OPPO最新一代的轻便型快充产品,均采用纳微半导
[手机便携]
恩智浦、地平线、映驰科技合作推出DCU3.0行泊一体域控制器
11月15日,盖世汽车获悉,恩智浦(NXP)、地平线与映驰科技携手合作,成功研发灵活、可扩展、平台化的DCU3.0行泊一体域控制器解决方案,并顺利进入量产准备阶段。 图片来源:映驰科技 图片来源:映驰科技 据悉,DCU3.0行泊一体域控制器解决方案基于NXP车载网络处理器S32G、地平线高性能车规级AI芯片征程3以及映驰科技高性能计算软件平台EMOS打造,满足了市场在高低速智能驾驶融合ONE-BOX的需求趋势。 具体来看,硬件方面,该方案基于NXP S32G车载网络处理器,可提供高效、实时和安全的应用网络处理,以及符合ISO26262 ASIL-D的路径规划和实时车控算力。与此同时,基于地平线征程3车规级AI芯
[汽车电子]
恩智浦、地平线、映驰科技合作推出<font color='red'>DC</font>U3.0行泊一体域控制器
智能高频开关电源系统的性能特点
为了保证智能高频开关电源系统的质量,我们组织了多名技术人员对多个生产厂家进行了考察,了解厂家的生产工艺、规模和实验测试手段等情况,经过“货比三家”后,技术改造决定使用GZDW—200/220型操作电源。它是专为电力系统研制开发的新型“四遥”高频开关电源,采取高频软开关技术,模块化设计,输出标称电压为220V,配有标准RS?232接口,易于与自动化系统对接,适用于各类变电站、发电厂和水电站使用。此设备有下列性能特点:   1)模块化设计,N+1热备,可平滑扩容。   2)监控功能完善,高智能化,采取大屏幕液晶汉字显示,声光告警。   3)监控系统配有标准RS?232接口,方便接入自动化系统,实施“四遥”及无人值守。   4)对蓄电池
[电源管理]
IDC:第一季平板电脑份额iPad下滑三星攀升
    第一季度全球平板电脑出货量厂商排名   新浪科技讯 北京时间5月2日凌晨消息,IDC发布最新报告称,2013年第一季度全球范围内,苹果公司iPad出货量依旧位居第一,三星和华硕分别排名第二和第三。   目前平板市场依旧形势大好:2013年首季全球平板电脑出货量为4920万台,虽略低于2012第四季度5250万台的水平,但年增长率呈上升趋势。本季度苹果公司的iPad继续领跑平板市场出货量,但市场占有率下滑至39.6%。三星位居第二,市占率升至17.9%。位居第三的是华硕,占比5.5%;亚马逊和微软则分别排名第四和第五,分别占比3.7%和1.8%。   根据IDC最新报告,平板电脑出货量比去年同期增长142.5个百分点(201
[手机便携]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved