通常,开关型稳压电源没有功率电感就不能工作。但是,如果您想改善它们对EMC的性能,可以从几个方面入手,包括屏蔽效率、绕组起绕点和开关转换。
DC/DC 开关电源在电源管理中至关重要,因为它们可以实现高效的电源供应。在这种情况下,功率电感是电源电路的关键元件,尽管开发过程中通常只会关注它的电气特性,例如 RDC、RAC和损耗,电磁辐射特性经常被忽视。图 1 展示的是典型的带有开关 S1 和 S2 的开关 DC/DC 电源电路。
图 1:典型的具有开关 S1 和 S2 的 DC/DC 电路
开关电源中的功率电感
在开关电源中,功率电感可以使用各种不同的磁芯材料和绕组类型来来设计和组装。此外,功率电感器可分为非屏蔽、半屏蔽或屏蔽三种。每种类型的屏蔽都有不同的优点和缺点,这决定了其应用领域。
开关电源的开关过程在电感两端产生交流电压。从实际角度来看,电感可以作为环形天线,电磁辐射取决于许多参数,包括磁芯、屏蔽材料以及绕组的起绕点。
功率电感的开关频率及其谐波在100kHz至30MHz较低频率范围内所发出的电磁辐射不仅取决于电感的屏蔽,还取决于绕组的特性。相比之下,电磁辐射在较高的频率范围(30 MHz 至 1 GHz )的电磁辐射是由高频振荡及其谐波引起的,它更多是由磁芯材料的屏蔽特性、开关频率和基本设计所决定的。
线圈辐射特性
如前所述,DC/DC 电路中功率电感产生的电磁辐射是不可以忽略的,还需要考虑相邻元件的类型和间距,以及它们对磁耦合的敏感性,这尤其重要。随着工程师对这一潜在 EMC 问题的认识不断增强,元件制造商也通过推出新产品系列做出了回应。除了常规的非屏蔽电感外,还推出了屏蔽和半屏蔽器件。屏蔽电感将绕组完全密封在磁屏蔽材料制成的结构中。在非屏蔽线圈中,绕组通常是暴露在外,没有磁屏蔽。电磁场的传播不受限制,它们通常是电磁干扰中最强大的干扰源。通常,半屏蔽电感会将磁屏蔽材料通过环氧树脂固定在的外露绕组上。用于测量 DC/DC 开关电源 (DUT) 中的电磁场的测试设置如图 2 所示。
图2:用于测量 DC/DC 电源中电磁场的测试装置
与半屏蔽和非屏蔽电感相比,屏蔽电感的主要优势是其电磁辐射相对较弱。图 3 展示了这三种屏蔽类型的基本发射特性。
图3:非屏蔽、半屏蔽和屏蔽电感的磁场测量结果
一般而言,工程设计的限制因素之一是尺寸。与同等尺寸的非屏蔽电感相比,屏蔽电感具有较低的电感量和饱和电流,以及较高的制造成本。初级工程师可能倾向于使用非屏蔽电感,因为其尺寸更小、成本更低、饱和电流更高。然而,这种选择可能会导致一系列在设计阶段后期难以解决的 EMC 问题。
伍尔特电子是少数几家提供半屏蔽电感的制造商之一,这类电感能够成功地填补在空间要求、电气特性和 EMC 之间的差距,尤其适用于电感周边元件对辐射不会特别敏感的场景。
如图 4 所示,尺寸为 8040 的 WE-LQS 半屏蔽功率电感器(744 040 841 00)与尺寸为 7345 的 WE-PD 系列的屏蔽电感(744 777 10)和尺寸为 7850 的 WE PD2 系列的非屏蔽电感(744 775 10)相比,具有出色的饱和特性。
图4:屏蔽(灰色)、半屏蔽(黑色)和非屏蔽(红色)电感的饱和特性对比
绕组起绕点的影响
一个经常被忽视的 EMC 关键特性是绕组的起绕方向,它由电感上的“点”来标识(图 5)。将电感标有点的一侧尽可能靠近开关节点来连接非常重要,因为这一侧的 dU/dt 值最高,因此干扰也最大。外部绕组会屏蔽开关节点在开关时电流切换引起的噪音。如果将未标记的一端连接到开关节点,则交流正向电压会出现在外层绕组。这可能会导致强烈的噪音耦合。
图5:WE-XHMI 和 WE-PD2 电感上标示了绕组起绕点
磁屏蔽电感有效屏蔽了磁场辐射,但并不总能屏蔽电场辐射。电场的屏蔽效率取决于磁芯材料的特性和磁导率:磁芯材料越强、导磁性越好,电感的电场屏蔽效率就越高。
题为“电源管理中功率电感的电磁辐射特性”的应用文档中提供了对开关转换引起的电磁干扰信号以及近场和远场中各种材料的屏蔽效应的详细讲
上一篇:Littelfuse eFuse集成保护IC应用在便携终端产品的优势
下一篇:Bourns新一代 GDT 系列产品,先进体现具独特共面性性能
推荐阅读最新更新时间:2024-10-31 18:04
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC
- 使用 Analog Devices 的 ADF7023BCPZ 的参考设计
- ADR434B 4.096 Vout 超低噪声 XFET 电压基准的典型应用,具有灌电流和拉电流能力
- LTC2313-12、12 位、2.5Msps 串行采样 ADC 的典型应用
- SC8812
- 头灯LED充电控制一体TYPE-C
- 使用 ROHM Semiconductor 的 BM2P031 的参考设计
- L7805C 可调输出稳压器的典型应用(7 至 30 V)
- 使用 Diodes Incorporated 的 ZR78L048 的参考设计
- NCV2002SN1T1G方波振荡器运放典型应用电路
- 使用 Diodes Incorporated 的 PT8A 3519CPE 的参考设计