电源的干扰分析及其抑制措施
开关电源作为电子设备的供电装置,具有体积小、重量轻、效率高等优点,在数字电路中得到了广泛的应用,然而由于工作在高频开关状态,属于强干扰源,其本身 产生的干扰直接危害着电子设备的正常工作。因此,抑制开关电源本身的电磁噪声,同时提高其对电磁干扰的抗扰性,以保证电子设备能够长期安全可靠地工作,是 开发和设计开关电源的一个重要课题。
1 开关电源干扰的产生
开关电源的干扰一般分为两大类:一是开关电源内部元器件形成的干扰;二是由于外界因素影响而使开关电源产生的干扰。两者都涉及到人为因素和自然因素。
1.1 开关电源内部干扰
开关电源产生的EMI主要是由基本整流器产生的高次谐波电流干扰和功率变换电路产生的尖峰电压干扰。
1.1.1 基本整流器
基本整流器的整流过程是产生EMI最常见的原因。这是因为工频交流正弦波通过整流后不再是单一频率的电流,而变成一直流分量和一系列频率不同的谐波分量, 谐波(特别是高次谐波)会沿着输电线路产生传导干扰和辐射干扰,使前端电流发生畸变,一方面使接在其前端电源线上的电流波形发生畸变,另一方面通过电源线 产生射频干扰。
1.1.2 功率变换电路
功率变换电路是开关稳压电源的核心,它产带较宽且谐波比较丰富。产生这种脉冲干扰的主要元器件为
1)开关管开关管及其散热器与外壳和电源内部的引线间存在分布电容,当开关管流过大的脉冲电流(大体上是矩形波)时,该波形含有许多高频成份;同时,关电 源使用的器件参数如开关功率管的存储时间,输出级的大电流,开关整流二极管的反向恢复时间,会造成回路瞬间短路,产生很大短路电流,另外,开关管的负载是 高频变压器或储能电感,在开关管导通的瞬间,变压器初级出现很大的涌流,造成尖峰噪声。
2)高频变压器开关电源中的变压器,用作隔离和变压,但由于漏感的原因,会产生电磁感应噪声;同时,在高频状况下变压器层间的分布电容会将一次侧高次谐波噪声传递给次 级,而变压器对外壳的分布电容形成另一条高频通路,使变压器周围产生的电磁场更容易在其他引线上耦合形成噪声。
3)整流二极管二次侧整流二极管用作高频整流时,由于反向恢复时间的因素,往往正向电流蓄积的电荷在加上反向电压时不能立即消除(因载流子的存在,还有电 流流过)。一旦这个反向电流恢复时的斜率过大,流过线圈的电感就产生了尖峰电压,在变压器漏感和其他分布参数的影响下将产生较强的高频干扰,其频率可达几 十MHz。
4)电容、电感器和导线开关电源由于工作在较高频率,会使低频元件特性发生变化,由此产生噪声。
1.2 开关电源外部干扰 开关电源外部干扰可以以“共模”或“差模”方式存在。干扰类型可以从持续期很短的尖峰干扰到完全失电之间进行变化。其中也包括电压变化、频率变化、波形失 真、持续噪声或杂波以及瞬变等,电源干扰的类型见表1。
在表1中的几种干扰中,能够通过电源进行传输并造成设备的破坏或影响其工作的主要是电快速瞬变脉冲群和浪涌冲击波,而静电放电等干扰只要电源设备本身不产 生停振、输出电压跌落等现象,就不会造成因电源引起的对用电设备的影响。
2 开关电源干扰耦合途径
开关电源干扰耦合途径有两种方式:一种是传导耦合方式,另一种是辐射耦合方式。
2.1 传导耦合
传导耦合是骚扰源与敏感设备之间的主要耦合途径之一。传导耦合必须在骚扰源与敏感设备之间存在有完整的电路连接,电磁骚扰沿着这一连接电路从骚扰源传输电 磁骚扰至敏感设备,产生电磁干扰。按其耦合方式可分为电路性耦合、电容性耦合和电感性耦合。在开关电源中,这3种耦合方式同时存在,互相联系。
2.1.1 电路性耦合
电路性耦合是最常见、最简单的传导耦合方式。其又有以下几种:
1)直接传导耦合导线经过存在骚扰的环境时,即拾取骚扰能量并沿导线传导至电路而造成对电路的干扰。
2)共阻抗耦合由于两个以上电路有公共阻抗,当两个电路的电流流经一个公共阻抗时,一个电路的电流在该公共阻抗上形成的电压就会影响到另一个电路,这就是 共阻抗耦合。形成共阻抗耦合骚扰的有电源输出阻抗、接地线的公共阻抗等。
2 .1.2 电容性耦合
电容性耦合也称为电耦合,由于两个电路之生的尖峰电压是一种有较大幅度的窄脉冲,其频间存在寄生电容,使一个电路的电荷通过寄生电容影响到另一条支路。
2.1.3 电感性耦合
电感性耦合也称为磁耦合,两个电路之间存在互感时,当干扰源是以电源形式出现时,此电流所产生的磁场通过互感耦合对邻近信号形成干扰。
上一篇:静电感应晶闸管(SITH)在开关电源电路中的应用
下一篇:地线的定义、阻抗及其干扰与抑制
推荐阅读最新更新时间:2023-10-18 16:21
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC
- 观看福禄克计量校准视频 参与调查问卷好礼送!
- 【泰有聊】系列技术文章连载1:示波器“芯”升级,聊一聊TEK061/041 ASIC创新平台
- 4月TI两场EP直播,都挺好:超声气体流量计量创新方案+SimpleLink平台小鲜肉CC13X2/CC26X2专场
- 开学季!EEworld下载中心 Cortex主题资源上传
- 有奖直播:5G和边缘计算发展和技术应用
- 【投票瓜分2500元红包】2022得捷电子创新设计大赛优秀作品人气奖由你来定!
- 逛东芝在线展会 开启任意门,答题闯关赢好礼
- 福禄克有奖直播|新型8.5位数字多用表技术发展及应用
- 如何加快你的FPGA设计步伐
- 【已结束】 Qorvo & Keysight 直播【新一代无线连接的挑战与应对之道】