一种低电压开关电流甲乙类存储单元的设计

最新更新时间:2007-08-09来源: 电子工程师关键字:偏置  信号  采样  时钟 手机看文章 扫描二维码
随时随地手机看文章

引言

开关电流存储单元是电流模式采样数据信号处理系统的基本单元电路,其性能的优劣直接影响采样系统的整体性能,因此,研究设计性能优良的开关电流存储单元是研究开关电流技术的重要环节。根据出现时间的先后,可将其分为第一代开关电流存储单元和第二代开关电流存储单元。第一代开关电流存储单元的优点是瞬态虚假信号很小,可以输出非单位增益电流信号,以及采用相对简单的单相时钟方案。它的不足是需要由两个晶体管组成,因此存在失配误差问题和较大的功耗。为克服失配误差等问题,人们进而研究出第二代开关电流存储单元。第二代开关电流存储单元采用单管存储方式来避免失配误差、降低功耗,这是它的优点。它的缺点是:电路工作时有较大幅度的瞬态虚假信号,虽然可以采用三相时钟方案来减小瞬态虚假信号,但是由于定时方案的复杂性,该方案在实际应用中并未得到广泛采纳;取样时无信号输出;只能输出单位增益的电流信号。如果要输出非单位增益的电流信号,则必须以电流镜输出方式。这一点与第一代开关电流存储单元类似,即也存在诸如失配误差和功耗增加等问题。因此,尽管第二代开关电流技术已经出现很长时间,但第一代开关电流技术仍然在实际应用巾起着重要的作用。

1 甲乙类存储单元

在便携式电子系统中,功耗是一个关键性问题。甲类存储单元的输入信号摆幅受偏置电流制约,即输入信号幅度不能超过偏置电流幅度;如果要增大信号摆幅,必须相应增大偏置电流,这无疑会使电路的静态功耗增大,因此甲类电路无法满足现代电子系统的低电压、低功耗设计需求。而甲乙类结构的电路仅需要极小的偏置电流就能实现较大的信号摆幅,即输入信号的幅度可以超过偏置电流幅度,所以很适合于低功耗电路应用。

本文采用如图1所示的甲乙类存储单元进行电路设计,电路原理如下:M1、M2为二极管接法的晶体管,M3、M4为存储管,电路采用单相时钟控制。在采样相φ1[n]:Vgs1=Vgs3,Vgs2=Vgs4,其中Vgs1、Vgs2、Vgs3和Vgs4分别为晶体管M1~M4的栅-源电压;输出电流为iout[n]=-Aiin[n],其中A为电流增益因子。在保持相φ1[n+1/2]:M3、M4的栅电容上的栅电压保持为Vgs1和Vgs3,所以输出电流为iout[n+1/2]=-Aiin[n]。电路实现的z域传递函数为H(z)=-Az-1/2。

2 甲乙类延迟单元

甲乙类开关电流延迟单元如图2所示,由两级甲乙类存储单元串联而成。M3、M4、M7、M8用做存储管,电路工作过程如下。在φ1[n]相,第1级存储单元的存储管M3、M4对输入电流取样;在φ2[n+1/2]相,开关φ1断开,M3、M4将取样相电流输出到第2级存储单元,由存储管M7、M8输出电流。电路实现的传递函数为H(z)=Az-1。

3 双线性积分器

图3(a)所示为采用图2所示延迟单元设计的双线性积分器,电路采用两相控制时钟。双线性积分器的工作时序波形如图3(b)所示。电路的工作原理如下。M1~M6构成电流增益为A的输入级,输入电流在φ1相的取样值由M3、M4的公共端输出,在φ2相的取样值由M5、M6的公共端输出。M 11~M 16构成电流增益为1的反馈级,输出电流由M 15、M 16的公共端反馈到M7、M8的公共端。

在φ1[n]相,输出电流为:

在φ2[n+1/2]相,输出电流为:

由式(1)和式(2)可以发现两者具有相同的z域传递函数表达式:

当时钟频率足够高时,φ1[n]相和φ2[n+1/2]相的输出信号近似相等,因此时钟φ1[n]相和φ2[n+1/2]相都可以用于信号输出,从而实现了双频采样输出。

4 仿真结果分析

采用HSPICE分别对设计的存储单元、延迟单元和积分器电路进行了仿真,晶体管模型选用TSMC0.18μm标准数字工艺参数。电源电压为±1 V;输入电流iin=40μA,信号频率fin=100 kHz,采样频率fs=1 MHz;开关管的宽长比W/L=0.4μn/0.4μm。所有PMOS存储管的W/L=28μm/4μm,所有NMOS存储管的W/L=12μm/8μm。

甲乙类存储单元的仿真结果如图4所示,由图4(b)测得的-3 dB频率为12.9 MHz,即电路的最大采样信号频率为12.9 MHz。

延迟单元和双线性积分器的仿真结果如图5和图6所示。

从图4~6可以看出,输出达到了预期功能。仿真波形中没有出现瞬态虚假信号,所有信号波形相当理想。




5 结束语

本文设计了一种低电压甲乙类开关电流存储单元,电源电压±1 V,其最大采样信号频率12.9 MHz,并且具有结构简单、容易设计的优点。HSPICE电路仿真结果表明,所设计的电路有良好的工作性能,所有波形都很理想。本文设计的双线性积分器可用于开关电流滤波器和开关电流调制器的设计中,在实际应用中还可以通过采用共源-共栅电路结构以及S2I等技术来进一步提升电路性能。

关键字:偏置  信号  采样  时钟 编辑:冀凯 引用地址:一种低电压开关电流甲乙类存储单元的设计

上一篇:如何为变化的负载阻抗提供恒定功率
下一篇:利用电源管理IC应对便携式设计的功耗挑战

推荐阅读最新更新时间:2023-10-18 14:39

飞思卡尔混合信号MCU助力中国应对汽车电子技术挑战
据中国汽车工业协会统计,中国汽车销售量增长迅速,2013年4月比去年同期增长13%。与此同时,为在这个竞争激烈的市场中脱颖而出,汽车制造商为汽车不断添加新的功能,每辆汽车采用的电子配置也不断增加。为了满足经济高效汽车电子系统的需求,飞思卡尔半导体(NYSE: FSL) 的S12 MagniV混合信号微控制器(MCU)系列组合为中国汽车制造商提供了高度集成、单芯片解决方案,这些解决方案极为可靠且易于开发,同时有助于降低物料成本(BOM)和总制造成本。 上汽集团(SAIC)技术中心高级经理金哲峰表示:“S12 MagniV单芯片解决方案帮助我们实现了以前需要多个器件才能实现的相同功能,节省了板卡空间,降低了物料成本,并使器件之间的兼
[嵌入式]
示波器测量汽车发动机气缸内压力测试信号
发动机动力不足是汽车维修中的常见故障,造成这个故障的原因可能是点火系统故障、喷油系统故障、进气故障或者机械方面的故障。机械方面的故障我们很难直接判定,一般都是通过仪器来间接测试,气缸压力的检测就是其中一项。我们可以采用气缸压力测试仪(缺点是只能看到最终缸内压力,没法看过程变化),或者用示波器配合压力探头来进行缸压测试。 开始测试之前,确保蓄电池电量充足,保证起动机运转有力。发动机热机,使水温表指针指示中间位置。确保发动机气缸的喷油系统和点火系统处于关闭状态。连接一个压力探头至示波器的通道一(改探头是一个压力传感器,能将压力信号转换为电信号输入到示波器)。清洁火花塞周围,移除发动机缸上的火花塞,减少发动机运转阻力。启动汽车发动机
[测试测量]
示波器测量汽车发动机气缸内压力测试<font color='red'>信号</font>
STM32f103 tim3_etr完成高频信号的频率计算
简介:timx可以定时,可以进行输入捕获,输入捕获可以测频率可测脉冲宽度,这就是这个实验要用到的功能。测量脉冲个数:每一个TIM都一个自己的计数器,和一个自己的预装载寄存器ARR.这里既然这是为了计数,那么设置ARR的值为0xFFFF,最大值。 学习stm32已经有一段时间了,接到第一个项目的时候是关于stm32f051的ad配置和da配置,本科时候连51都没接触过的人一上来就是32位单片机,着实让我蛋疼菊紧的很。还好慢慢的啃了中文手册和网上的一些例程,总算是完成的功能。这些个有时间再整理上传吧。 之后又弄了些103的东西,今天主要整理一下在进行信号频率计算的时候遇到的一些问题和解决办法,以便日后查看。也希望给碰到类似问题
[单片机]
2-DCCF卫星定位信号接收机的设计
  1 引言   70年代中期,美国人Sanders Associates最早提出弹道修正引信的概念。弹道修正引信(Course Correcting Fuze,CCF)是指在引信中采取相关措施来实现弹丸飞行弹道的简易控制、从而达到减小弹丸落点散布目的的一种新概念引信。它通过对传统引信的改造,使其增加了弹道修正的功能,开拓了一条低成本、高效益的炮兵弹药精确化之路。弹道修正引信不仅具有传统引信系统的保证弹药安全和控制战斗部起爆的功能,还具有感知及辨识弹道环境和修正弹道的功能。按修正效能的不同分为一维(1-DCCF)和二维弹道修正引信(2-DCCF)。二维弹道修正引信不仅可以对弹道进行射程修正,而且还可以进行方向修正,因此精度更高
[家用电子]
双端拓扑与仿电流感测信号技术在宽或高输入范围DC/DC降压系统中的应用
 1、关于宽或高输入范围、低电源输出功率降压稳压系统的问题 一般来说,常常采用开关稳压器将不稳定的宽与高输入电压降低为稳定的低输出电压。对于必须通过DC/DC转换降低输入电压的系统来说,采用开关稳压器可大幅提高转换效率,这方面远比线性稳压器好得多。其脉宽调制(PWM)电源供应控制器有单端拓扑结构与双端拓扑结构。 1.1单端拓扑结构的控制方法与特征 控制方法有二种,即电压模式与电流模式。电压模式是简易、低噪音的控制方法,可满足大输入及输出范围的需求。电流模式是带内置电流限制,拥有快速瞬态响应时间。 集成度:集成的软启动(可编程)提供了可预测的启动能力,而内置前沿消隐电路(1eadingedgeblanking),用以抑制MOSFET管
[电源管理]
双端拓扑与仿电流感测<font color='red'>信号</font>技术在宽或高输入范围DC/DC降压系统中的应用
测量高频信号时避免使用鳄鱼地线
对于高频信号测量时,探头的鳄鱼接地线是万恶之源,无论多好的仪器都无法发挥价值,这是为什么呢? 1、高频晶振实测对比 我们先来感受一下,探头地线长与短其测量结果有何不同。 以晶振信号测量为例,如图1所示为常规的鳄鱼线接地测量方法,可看到信号过冲严重伴随振荡,和想像中的方波不一样。而图2所示的短地线弹簧接地测量方法,波形端正不少,显然资深工程师的方法没错。 图1 常规(鳄鱼线)测量方法(错误) 图2 短地(弹簧地)测量方法(正确 2、核心区别:电感 种种迹象表明凶手就是“地线” 如图3所示为示波器使用探头进行信号测量理论上的等效模型。探头与示波器组成具有一定输入电阻和输入电容的测试设备;被测量信号等效为具有一定内阻
[测试测量]
测量高频<font color='red'>信号</font>时避免使用鳄鱼地线
DVI信号线简介及应用
DVI信号线简介及应用 DVI是什么?   如今带有DVI接口的液晶显示器十分普及,另外配备同样接口的显示卡也很常见,如此配合起来导致了DVI大行其道,而传统的VGA接口由于不能和数字信号完全匹配,因此逐渐走向没落。   说到DVI接口,很多朋友都会想到白色的D型插座。没错,这就是DVI接口,但和VGA接口不同。DVI接口分为3大类5种标准,每种标准都有自己的应用范围,如果使用中不加以区别,就会影响显示设备的性能。 因此,作为一种常见的显示接口标准,我们还是很有必要对DVI有所了解的! DVI详解   DVI全称为Digital Visual Interface,它是1999年由Silicon
[模拟电子]
DVI<font color='red'>信号</font>线简介及应用
卫星调谐器MAX2116的P(1dB)应用特性介绍
简介    MAX2116 P1db数据是在射频和基带增益的可调范围内在这两个增益的一些特定组合下测得的。这些数据可用来选择增益控制设置来恰当的分配前端和后端增益以达到合适的P1db性能。P1db和噪声系数数据一起对于优化接收机系统的动态范围是很有帮助的. 对于大的接收信号,需要高的P1db来避免调谐器饱和.把射频可变增益放大器调为低增益,P1db会大大增高以便于大信号的接收。由于射频增益的降低会增加调谐器的噪声系数,所以系统设计需要仔细地平衡P1db和噪声系数。这篇应用笔记是帮助你找到平衡点的一种方法。 应用概述    图1所示为一个MAX2116/MAX2118的典型应用电路.引脚4和5为差分射频
[家用电子]
卫星调谐器MAX2116的P(1dB)应用特性介绍
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved