采用运算放大器实现低电压大电流的电源转换

最新更新时间:2006-11-03来源: 电子系统设计关键字:电压  PWM  PCB 手机看文章 扫描二维码
随时随地手机看文章

采用LDO来实现PC主板要求的低电压大电流电源具有很大的难度,而采用PWM电路需要采用较多的元件,PCB占位面积较大。本文通过分析当前主板设计要求和PWM电路的特点,提出了采用运算放大器实现低电压大电流的设计思路和方法。

 

INTEL芯片组和CPU要求电源的电压越来越低,而电流却越来越大,主板设计工程师不仅要很好地解决芯片之间互连产生的信号完整性和EMI等高速信号设计问题,还必须解决电源问题。电源是主板的动力源,在实际的产品调试过程中所出现的很多问题都直接与电源相关。

在我们的新项目中使用了INTEL新的芯片组和CPU,和以往不同的是,前端系统总线(FSB)将使用独立的终端(termination)电源,需要系统提供最大为6A的1.2V电源。其核心逻辑(core logic)和HUB LINK也将最大消耗7A×1.5V的功耗。在以往的做法中会直接使用LDO来实现低电压小电流的转换,然而,在这么大的电流情况下很难找到合适的LDO来实现电源转换。


 

PWM电路分析

对于低电压大电流的情况一般会用PWM的方式来实现电源转换,因此最开始的设计采用PWM来实现1.2V和1.5V电源的转换,均采用单相。采用合适的PWM控制器可以直接控制两路电源的输出,电路如图1所示,这种拓扑结构在主板上应用广泛,从CPU的电源供电到DDR的电源和终端供电都是通过该方式实现的。这是一种很成熟的电源转换方式,可以很可靠地实现低电压大电流的转换。

在这种转换结构中,MOSFET工作在饱和和截止两个区,上端MOSFET的功耗主要由导通功耗和开关功耗两部分构成,下端MOSFET可以实现零压差的转换,功耗主要由导通功耗决定,即MOSFET上的功耗主要由Rds(on)和Qg决定,由于现在的MOSFET工艺水平的进步,可以做到Rds(on)和Qg都比较小,因此MOSFET功耗产生的热量可以比较好地解决,必要时可以并联两个MOSFET来减小其散热。为了让输出电压纹波比较小,通常会在这里用到比较大的电感和大容值电容。这种电路结构的特点是简单成熟,元件的选择范围宽,功率器件散热问题可以比较好地解决。这种方式的缺点是使用的元件比较多,每一相至少需要两个MOSFET和一个电感,元件占用面积很大。在上述的电路中预估元件所占用的面积约为16平方厘米。

目前主板上的元件密度已经越来越高,从而可以使价值密度也提高。本项目规格为两颗CPU的标准ATX主板,INTEL最新CPU的设计指导建议每颗CPU的电源将单独由4相供给,2颗CPU共8相。四条DDRII内存,6条PCI/PCI-X/PCI EXPRESS插槽,主板上部CPU附近的元件摆放具有一定难度,当把主要部件摆放好了后,发现已经没有足够的空间摆放转换1.5V和1.2V所需要的四颗MOSFET、两个大电感和一个PWM控制器,还必须要在电源输出端摆放几颗大容值的电解电容。

运算放大器实现电源转换

在这种情况下决定采用运算放大器的功率放大来实现电源的转换,其电路如图2所示。电路中采用了运算放大器LM358,其内部封装了两颗完全独立的运算放大器,可以工作在单端电源供电或者双电源供电,工作带宽为1MHz,并带温度补偿。MOSFET采用FDS6690A,为TO-252封装,MOSFET将工作在饱和区和线性区。

该项目中使用了DDRII技术,其工作电压为1.8V,有别于DDRI的2.5V,并且不再需要提供额外的DDR终端电源。当整个系统插满4条DDRII模块全速工作时将最大需要30A@1.8V的电流。加大1.8V的电源供给使其达到40A的供给能力,可以直接将1.8V提供给1.2V和1.5V转换的电源。从1.8V转换到1.2V和1.5V的低压差特点使得线性低电压大电流转换成为可能。

如果采用该转换方式,仅仅用一颗LM358、两颗MOSFET以及一些大容值输出电容就可实现两个独立电源转换,元件的数量减少一半,可以很好地解决摆放空间不够的问题,其整体的PCB占用面积只有8平方厘米,只相当于采用PWM方式所占用面积的一半。

电路仿真

首先将通过PSPICE建立模型来仿真电路,避免一些不必要的设计错误。在这里仿真6A/1.2V的输出工作情况。如前所述,在该电路中转换电流源1.8V会和DDRII消耗的电源共用。设计中1.8V通过两相PWM输出,其切换频率为200kHz,建立的电源模型:1.8+0.2sin(t×2π×1000k)(DDRII电源规范的范围为1.7~1.8v)。选择MOSFET


 
FDS6690A,可以从互联网得到其PSPICE模型,芯片组和CPU不提供PSPICE模型,根据电流变化参数,建立简单负载模型,其阻抗在最大阻抗和最小阻抗中高速变化以模拟最坏的缓冲器切换情况。系统要求最大的电流为6A,此时近似的最小负载阻值为1.2/6=0.2Ω。考虑到参考电压通过系统3.3V分压得到,建立参考电压的模型:1.2+0.12sin(t×2π×5000k)。对于输出端的电容补偿,使用共计1000uF容值电容,其等效串联电感ESL为10nH,等效串联电阻ESR为30mΩ。建立图3中的仿真模型(图中负载模型没有给出)。

通过仿真,可以得出输入输出电压以及MOSFET上功耗的波形和负载上电流波形。

从以上的仿真结果可以看出输出电压变化范围为1.15V~1.25V,MOSFET上功耗变化范围为0.4W~4.75W。平均功耗已经超过了2W,该MOSFET最小热阻为45℃/W。如此大功耗产生的热将不能够有效散发,热的积累将可能把MOSFET烧毁。通过分析,决定在MOSFET漏端串接大功率小阻值电阻,让一部分功耗消耗在电阻上,见图4。

同样做相应的电压输出、MOSFET和电阻上的功耗仿真。仿真的结果是输出的电压纹波将增大,造成增大的原因为漏端电阻的加入相当于增加了电源的内阻。尽管如此,输出电压值仍然在1.15V~1.25V内变化。此时可以看到MOSFET上的功耗已经显著减小,平均功耗小于1.5W,此时电阻上的功耗也为1.5W左右。MOSFET的工作温度将小于90℃,这样就很好地解决了PCB占用面积和MOSFET发热问题。

通过对上面这种方式的仿真分析,可以得出该方式的优点为元件少、电路更加简单、输出稳定,但是该电路工作在线性工作区,功率器件上的发热量会比较大,而且其发热是连续的而非PWM方式的间歇发热,因此解决散热问题成了该方式的最主要问题。简单的PSPICE模型为新设计提供了一个很好的参考,通过仿真可以在设计阶段解决一些可能存在的问题,从而缩短新产品调试和上市时间。

关键字:电压  PWM  PCB 编辑: 引用地址:采用运算放大器实现低电压大电流的电源转换

上一篇:基于电流型PWM集成控制器UC3842/3843的隔离单端反激式开关电源
下一篇:用低压差线性稳压器优化开关电源设计

推荐阅读最新更新时间:2023-10-18 14:33

基于SOPC技术的医用呼吸机主控系统设计
  呼吸机是可以代替人的呼吸功能或辅助人的呼吸功能的仪器。它适用于呼吸衰竭、甚至停止呼吸的病人做人工呼吸之用。它能帮助病人纠正缺氧和排出二氧化碳,是挽救某些危重病人生命的重要工具。   现有的呼吸机产品,其主控系统大多基于单片机来实现,对于功能强一些的产品就需要使用高端单片机,这样使得系统的成本比较高,而且外围的接口模块较多,结构复杂。使用SOPC(可编程片上系统)技术设计主控系统,可充分利用IP核的强大功能,精简外设数量,与此同时只占用了很小部分的资源,大大提高了系统的性价比。   本文利用SOPC技术设计了持续气道正压通气呼吸机的主控系统,使用了Altera公司的Nios II软核处理器以及一些通用的IP核,笔者基于A
[嵌入式]
51单片机学习:ADC模数转换实验--电位器电压采集
实验名称:ADC模数转换实验--电位器电压采集 接线说明: 实验现象:下载程序后,数码管上显示AD模块采集电位器的电压值 注意事项: ***************************************************************************************/ #include public.h #include smg.h #include xpt2046.h /******************************************************************************* * 函 数 名 : main * 函数功能 : 主函数 *
[单片机]
电压跟随器输入和输出的误差的分析
电压跟随器,顾名思义,就是输出电压与输入电压是相同的,就是说,电压跟随器的电压放大倍数恒小于且接近1。电压跟随器的显著特点就是,输入阻抗高,而输出阻抗低,一般来说,输入阻抗要达到几兆欧姆是很容易做到的。输出阻抗低,通常可以到几欧姆,甚至更低。 输入输出端出现相位差的主要原因 其原因大致可分为两种: 1,由于运算放大器固有的特性 2,由于运算放大器以外的反馈环路的特性 运算放大器的特性 Fig2a 及Fig2b分别代表性地反映了运算放大器的电压增益—频率特性和相位—频率特性。数据手册中也有这两张曲线图。 如图所示,运算放大器的电压增益和相位随频率变化。运算放大器的增益与反馈后的增益(使用电压跟随器时为0dB)之差
[家用电子]
电压参考进行滤波以获得低噪声性能
输出电压相对于电压参考的短期变化即为噪声。参考电压噪声一般发生在以下两个频段:短期噪声在0.1Hz"10Hz,宽带噪声在10Hz"1kHz。由于噪声电压一般与参考电压成正比,故常用每百万分之一 (ppm) 来表示噪声,并借此使每百万分之一值恒定。能隙(或带隙)电压参考具有介于3ppm"16ppm之间的噪声电压,但埋入式齐纳电压参考的噪声更低,介于0.1ppm"0.5ppm之间。噪声随参考电流的增加而减小,但增加参考电流并不是大多数电压参考的选项。因此,改进噪声性能的有效途径是采用外部噪声滤波器。滤波器可有效地减少噪声:噪声带宽减少100倍可使噪声减少10倍。   图1a所示电路给出了一种典型的电压参考滤波器,其中负载电流流过R1,
[应用]
利用波形换算判断交流电压表的检波方式
摘要:为了确定某一未知交流电压表的检波方式,根据交流电压表测量电压时的波形换算方法及其适用范围,提出了一种判断交流电压表检波方式的新方法:将正弦波信号和方波信号分别接到所用电压表上,调节信号幅度,使电压表的示值相等,保持这两种信号不变,根据示值得出两种信号的有效值、平均值和峰值并比较其大小。若两者峰值相等,则可判断检波方式为峰值检波;若两者平均值相等,则可判断为均值检波;若两者有效值相等,则可判断为有效值检波。通过实验实例证实了该方法简单可行,进而提供了一种判断交流电压表检波方式的有效方法。 关键词:波形换算;定度系数;交流电压表;检波方式     用交流电压表测某信号时,其值并不总是信号的有效值,它的读数的含义与所测波形及所用交
[电源管理]
利用波形换算判断交流<font color='red'>电压</font>表的检波方式
FAN6754-用于反激式适配器的多功能PWM控制器
当你把几乎任何小型计算或消费电子设备插入电源插座时,便不难发现手中的插头大部分都连接到外部电源(EPS)。EPS是所有小型电子设备工作的必不可少的部分,单单在美国,就有多达15亿个在使用中 (据业界估计,在全球则超过30亿个)。   EPS的核心是多功能PWM控制器集成电路(IC)(如飞兆半导体的FAN6754)以及功率 MOSFET,它们联合工作,为负载高效分配能量,并监控电路以保护系统。所有元器件都被集成在一个精简的封装中,与过去那种看起来老旧笨重的电源成了强烈对比。   PWM控制器可被视为电源的大脑。它监控反馈数据并调整占空比,以调节开关模式电源(SMPS)的输出电压,帮助系统满足所有相关节能标准。   这种
[电源管理]
FAN6754-用于反激式适配器的多功能<font color='red'>PWM</font>控制器
基于LabVIEW 8.2的多用虚拟电压表设计
  O 引 言   虚拟仪器是随着 计算机 技术、电子测量技术和通信技术发展起来的一种新型仪器。它充分利用计算机系统强大的数据处理和显示能力,利用软件完成数据的采集、控制、数据分析和处理以及测试结果的显示等,通过软、硬件的配合,实现传统仪器的各种功能,真正实现了“软件即仪器”的概念,用户可以方便地对仪器进行维护和扩展。   电压是电路中常用的电信号,通过电压测量,利用基本公式可以导出其他的参数。因此,电压测量是其他许多电参数和非电参数量的基础。测量电压相当普及的一种测量仪表就是电压表,但常用的是 模拟 电压表。模拟电压表根据检波方式的不同。分为峰值电压表、均值电压表和平均值电压表,它们都各自做成独立的仪表。
[测试测量]
远翔FP6115:PWM控制2A同步整流降压IC
FP6115是一个用于广泛工作电压应用领域的降压开关调节器。FP611内置大电流P-MOSFET、用于将输出电压与反馈放大器进行比较的高精度参考(0.8V)、内部软启动定时器和固定频率振荡器。该振荡器用于控制最大占空比和PWM频率。 特征 ➢精密反馈参考电压:0.8V(2%) ➢宽电源电压工作范围:3.6至23V ➢低电流消耗:3mA ➢内部固定振荡器频率:340KHz(类型)。 ➢内部软启动功能(SS) ➢内置P-MOSFET,用于2A输出加载 ➢过电流保护 ➢封装:SOP-8L 应用案例 1、FP6115兼容美台Diodes型号AP1520 2、FP6115兼容美台Diodes型号AP5002 3、液晶电源管理:用FP
[嵌入式]
远翔FP6115:<font color='red'>PWM</font>控制2A同步整流降压IC
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved