利用固定导通时间控制器优化开关电源能效

最新更新时间:2008-01-04来源: 电子工程世界关键字:反激式开关电源  PWM控制器  准谐振  轻载能效  导电模式 手机看文章 扫描二维码
随时随地手机看文章
由于拥有较高的效率和较高的功率密度,开关电源在现代电子系统中的使用越来越普及。特别是随着控制芯片的应用,开关电源的电路设计得到了极大的简化,往往只需要在脉宽调制(PWM)控制芯片的基础上再加一些外围器件即可组成开关电源,这更加促进了开关电源的设计和发展。从种类来看,开关电源主要包括交流-直流(AC-DC)转换器和直流-直流(DC-DC)转换器两大类型。前者是将输入为50/60 Hz的交流电经过整流、滤波等步骤将其转换为直流电压,后者广泛用于对系统中的直流电源进行转换和分配。

  根据拓扑结构的不同,DC-DC转换器包括降压(Buck)、升压(Boost)、降压-升压(Buck-Boost)、反激(Flyback)、正激(Forward)、推挽(Push-Pull)、半桥(HB)和全桥(FB)等不同类型。不同类型DC-DC转换器的特点各不相同,并且往往有着不同的适用领域。例如,降压、升压和降压-升压转换器非常适合于无需电气隔离的低压控制应用,而反激式转换器则非常适合多输出、高电压的电源应用,这些应用中使用的离线式开关电源工作在110 V/220 V主电源,并通过使用变压器来取代滤波电感从而实现电气隔离。

  对于离线式开关电源而言,低成本是它的一个重要目标。对于其中所用的PWM控制器而言,设计人员可以选择不同的架构,如固定频率(FF)和准谐振(QR)等。对于前者而言,它的开关频率固定,其轻载能效和满载能效都处于正常范围,工作模式方面可以是连续导电模式(CCM)或非连续导电模式(DCM)。对于后者而言,它的开关频率可变,其满载能效最佳,但在轻载时则由于谷底跳变问题(噪声),它的工作模式是边界导电模式(BCM,亦称临界导电模式,CRM)。在变压器尺寸方面,固定开关频率架构属于正常,而准谐振架构则较大;但准谐振架构的电磁干扰较小,而固定开关频率架构则较大。对于这两种架构而言,都面临着相同的问题,就是必须提升在更宽输入负载范围下的能效,并改善待机能效。

  除了这两种架构,固定导通时间(FON)架构近年来越来越多地受到业界瞩目。在这种架构下,峰值电流保持恒定,且可由用户选择;而开关频率则会变化(改变关闭时间),以提供所需的输出功率,它在频率最高时提供的输出功率也就最大。FON的工作原理如图1所示。


图1:固定导通时间(FON)架构的工作原理

  与固定开关频率架构一样,固定导通时间架构也支持CCM和DCM这两种工作模式。它在这两种模式下的输出功率计算公式如下图所示。如上所述,峰值电流Ipeak通过控制器来保持恒定,开关频率Fsw则由反馈回路进行控制,而要适应不同的输出功率需求,开关频率会发生变化来满足图2中的等式。在缺少回路控制(短路,启动)时,开关频率会被钳位。


图2:FON控制器在不同工作模式下的输出功率计算

  在满载条件下,开关频率则会增加,直至其碰到时序电容Ct钳位。而在轻载条件下,峰值电流减小,开关频率下降,这就限制了可听噪声的问题。在轻载时,由于开关频率的下降,与开关频率相关的损耗,如功率MOSFET输出电容Coss和门电荷损耗以及泄漏感抗损耗也会减少。这样一来,开关电源在轻载条件下的能效也会提高。因此,我们也可以得出结论,固定导通时间(FON)控制器可大幅提高开关电源在轻载条件下的能效。图3对不同PWM控制器架构进行了比较。


图3:反激开关电源中PWM控制器所涉及的不同控制器架构比较

瞄准低功率反激开关电源应用的NCP1351固定导通时间控制器

NCP1351是安森美半导体近期推出的一款高性能固定峰值电流(准固定导通时间)、可变关闭时间PWM控制器,瞄准低功率反激式开关电源应用,典型的终端产品应用包括辅助电源、打印机、游戏机、低成本适配器和离线电池充电器等对成本非常敏感的应用。

NCP1351在负载降低时会降低开关频率,使得采用NCP1351的电源能够提供卓越的空载能耗,并在其它负载条件下优化电源能效。当开关频率下降时,峰值电流会逐渐下降到最大峰值电流的大约30%,因此可防止变压器发生机械共振,从而大幅消除了出现可听噪声的风险,同时还能维持良好的待机功率性能。

NCP1351包括A、B、C和D等四个不同版本。NCP1351外围可调节的定时器能够持续监测反馈活动,并在出现短路或过载的条件下保护电源。一旦定时器逾时,NCP1351会停止开关,其中A版本会保持在闩锁状态,而B版本则会尝试重启。C版本和D版本则包含双过流保护极限跳变点(trip point),从而允许在打印机等会出现大瞬态功率现象的应用使用这种控制器。当确认出现故障时,C版本会进行闩锁而D版本则会自动恢复。

NCP1351的内部结构体现了优化的安排,它具有非常低的启动电流, 而启动电流在设计低待机功率电源时是一项基础参数。NCP1351的负电流感测技术可将控制器工作时的开关噪声影响降到最小,并可供用户选择流经电流感测电阻的最大峰值电压。因此,它的功率耗散可针对具体应用来优化。此外,降压输入纹波功能可确保自然的频率拖尾,使得电磁干扰(EMI)信号变得更平滑。


图4:NCP1351的典型应用电路图

  图4显示的是NCP1351的典型应用电路图。NCP1351包含8个引脚,如图所示。其中,1号引脚是FB引脚,在此引脚注入电流,降低频率;2号引脚是时序电容Ct引脚,负责在没有反馈电流时设定最大开关频率;3号引脚Cs负责检测初级端电流;4号引脚为接地引脚;5号DRV引脚驱动脉冲至功率MOSFET;6号引脚是Vcc引脚,为控制器提供最高可达28 V的电压;7号引脚为闩锁引脚,在此引脚高于5 V的正电压完全闩锁控制器;8号引脚为定时器引脚,设定故障确认前的持续时间。

基于NCP1351的GreenPointTM 40 W打印机电源参考设计

  如上所述,NCP1351控制器非常适合打印机电源等应用。安森美半导体针对NCP1351提供了丰富的设计资源,包括《40瓦打印机电源设计AND8278》、《50瓦适配器电源设计AND8263》、《12瓦适配器电源设计》、《使用PWM开关技术建模》等应用笔记,以及“40瓦额定/80瓦峰值功率打印机电路板”和“57瓦适配器电路板”等评估板。安森美半导体还提供GreenPointTM 40 W打印机电源参考设计。此外,安森美半导体还提供一些设计和开发工具,如NCP1351电感计算数据表,以及Spice模型(PSPICE和ISPICE)等仿真工具。

  本文接下来具体就NCP1351在40 W打印机电源中的应用设计展开探讨,分析打印机电源当今所面临的要求,以及NCP1351如何满足这些要求。

  众所周知,随着全球变暖成为一项日常话题以及石油价格的窜升,全世界都开始明白当前的能源使用方式不利于可持续发展。世界各地围绕着不同领域(如外部电源、家用电器等)涌现了许多倡议行动。由于应用面非常广泛且消耗的电量巨大,打印机自然而然地成为政府机构想要涉足的一个领域,以此提高电源的能效。这些倡议项目及组织非常之多,分布在日本、韩国、德国、欧洲和美国等地。在所在的标准倡议机构中,“能源之星(Energy Star)”是其中一个相当活跃的机构,该机构已经就影印设备规范展开工作。符合能源之星要求的打印机应可在一段时间的不工作状态后自动进入低功率的“休眠”模式。根据独立打印机处理纸张尺寸和色彩能力的不同,还有着不同的“能源之星”规范要求。将打印机很大一部分时间保持在低功率的休眠模式不仅能够节省电能,更可使打印设备工作时的温度更低,且耐用时间更长。“能源之星”针对打印机等相关设备的1.0版规范已于2007年4月1日实施,第二阶段的规范则将在2009年4月1日实施。

  但问题在于,现有的打印机电源适配器很少能够满足当前这些轻载条件下的能效要求和空载条件下的待机能耗要求,这还不说更的严格要求正在涌现。此外,打印机电源适配器的总成本也必须极低,因为这是一个高度竞争的市场。因此,满足这些能效和能耗要求,同时还维持打印机电源适配器的可靠性和性能水准就成为一项挑战。


图5:基于NCP1351C的安森美半导体40 W GreenPointTM打印机电源参考设计

  幸运的是,采用NCP1351C控制器可以满足上述挑战。受益于它的固定峰值电流/可变关闭时间架构,采用NCP1351C的电源适配器在从额定负载到轻载条件(包括不同的打印机休眠模式)下都拥有较高的能效,并拥有极低的空载能耗。它在提供瞬态峰值功率的同时还提供多种有效的保护功能,如闩锁过载、短路和过压保护等。此外,与当前高水准的打印机电源适配器相比,NCP1351C所具有的独特架构还使得采用它设计的打印机电源适配器所用的高压输入电容低1/3,从而在提供相同性能条件下节省了方案成本和尺寸。图5显示的是基于NCP1351C的安森美半导体40 W GreenPointTM打印机电源参考设计。该参考设计的规范如下所示:

输入电压:通用输入85 Vac至265 Vac,47-63 Hz
电源输出电压:
32 V / 1 A
16 V / 0.625 A
峰值功率:
80 W (32 V / 2.5 A和16 V / 0 A ) 持续40 ms
62 W (32 V / 1.94 A和16 V / 0 A) 持续400 ms

能效要求:
满载(40 W)时> 80 %
休眠模式(2 W和4 W)> 70 %
空载条件下输入功率Pin < 0.3 W


图6:基于NCP1351C的安森美半导体40 W GreenPointTM打印机电源参考设计在不同输出功率条件下的能效

[总结]:在反激式开关电源中,PWM控制器存在着不同的架构,如固定开关频率和准谐振等;这两种架构各有其特点,但它们都需要提升在更宽功率范围下的能效,特别是轻载条件下的能效;而在这方面,固定导通时间(FON)架构则有着其独特的优势。安森美半导体的NCP1351就是一款高性能的电流模式PWM控制器,它基于固定峰值电流(准固定导通时间)、可变关闭时间技术,在负载降低时能降低开关频率,从而使得采用NCP1351的电源能够提供卓越的空载能耗,并在轻载条件下提供更高的能效,非常适合于辅助电源、打印机、游戏机、低成本适配器和离线电池充电器等对成本非常敏感的终端产品应用。安森美半导体更针对NCP1351提供丰富的设计资源,其中包括高能效的40 W GreenPointTM打印机电源适配器参考设计,帮助客户满足日渐严苛的能效规范要求,缩短产品开发时间,并加快产品上市进程。

关键字:反激式开关电源  PWM控制器  准谐振  轻载能效  导电模式 编辑:金海 引用地址:利用固定导通时间控制器优化开关电源能效

上一篇:降低视频子系统的工作和待机功耗
下一篇:错误检测与纠正电路的设计与实现

推荐阅读最新更新时间:2023-10-18 14:40

基于UC3842的单端反激式开关电源的设计
0 引言       电源装置是电力电子技术应用的一个重要领域,其中高频开关式直流稳压电源由于具有效率高、体积小和重量轻等突出优点,获得了广泛的应用。开关电源的控制电路可以分为电压控制型和电流控制型,前者是一个单闭环电压控制系统,系统响应慢,很难达到较高的线形调整率精度,后者,较电压控制型有不可比拟的优点。       UC3842是由Unitrode公司开发的新型控制器件,是国内应用比较广泛的一种电流控制型脉宽调制器。所谓电流型脉宽调制器是按反馈电流来调节脉宽的。在脉宽比较器的输入端直接用流过输出电感线圈电流的信号与误差放大器输出信号进行比较,从而调节占空比使输出的电感峰值电流跟随误差电压变化而变化。由于结构上有电压环、
[电源管理]
反激式开关电源变压器初级线圈电感量的计算
反激式开关电源变压器初级线圈电感量的计算 反激式开关电源与正激式开关电源不同,对于如图1-19的反激式开关电源,其在控制开关接通其间是不向负载提供能量的,因此,反激式开关电源在控制开关接通期间只存储能量,而仅在控制开关关断期间才把存储能量转化成反电动势向负载提供输出。在控制开关接通期间反激式开关电源是通过流过变压器初级线圈的励磁电流产生的磁通来存储磁能量的。根据(1-98)式和(1-102)式,当控制开关接通时,流过变压器初级线圈的最大励磁电流为:     (1-123)式就是计算反激式开关电源变压器初级线圈电感的公式。式中,L1为变压器初级线圈的电感,P为变压器的输入功率,Ton为控制开关的接通时间;I1m为流过变压器初
[电源管理]
<font color='red'>反激式</font><font color='red'>开关电源</font>变压器初级线圈电感量的计算
ZMDI发布ZSPM2000来扩展其现有的智能电源管理产品组合
ZMD AG(ZMDI)是一家总部位于德国德累斯顿的业界领先的全球半导体公司,专注于节能方案,公司今天对外宣布推出ZSPM2000产品,本产品是一款配有集成式MOSFET驱动器的可配置全数字PWM控制器,用于智能数字负荷点的解决方案。 ZMDI的ZSPM2000作为同步降压转换器,其运行采用单路单相配置。ZMDI's Tru-Sample Technology(tm)及State-Law Control(tm)算法保证最佳瞬态性能和优异的稳态性能。采用集成式功率分级驱动器,ZSPM2000用于空间受限及高性能应用较为理想,例如服务器、储存单元、基站、FPGA板和电讯设备。通过PMBus(tm)接口可完成数字通讯和控制,而且ZMDI
[单片机]
AP384XC系列PWM控制器的设计考虑
Ⅰ.主要特点简介 384X系列电流型PWM控制器已广泛应用于开关电源设计中。许多半导体厂商都生产此标准电源管理控制芯片。表一列出了BCD和三个主要竞争对手产品的关键参数对比。   与竞争对手的产品相比,BCD的AP384XC具有如下特点: 1.低启动电流 2.低工作电流 3.内部过温保护功能 这些特点不仅能够提供更加可靠的过温保护,而且能降低开关电源在空载待机时的功耗。 同时,由于启动电流小,AP384XC的启动电路参数应当和竞争对手产品稍有不同。在某些应用中,一个简单的直接替代可能会产生问题,尤其是在短路工作模式中。 在其它部分的性能参数上,例如内部运放,参考电压,PWM部分,驱动能力,欠压保护以及启动关
[工业控制]
基于三引脚PWM控制器HV9921/22的LED灯电源及设计
摘要:HV9921和HV9922是三引脚PWM降压变换器控制器,利用85~264V AC 的交流输入或20~400V DC 的直流输入工作,分别提供20mA和50mA的恒流驱动高亮度LED串。文中在介绍HV9921/22结构与特点的基础上,给出了基于HV9921与HV9922的LED灯电源电路及设计。   关键词:HV9921/22;LED灯;驱动器;电路;设计    1、引言   高亮度LED的发展使LED不再局限于仅在便携式电子产品(如电话手机)中应用。像装饰照明等许多场合,LED并不适宜采用电池供电,而需求利用工频市电电源供电。传统的LED交流电源供电方案需要一个电源变压器,将220V的AC电压降压。而HV9921
[电源管理]
基于三引脚<font color='red'>PWM控制器</font>HV9921/22的LED灯电源及设计
基于24V电源的双环电流型PWM控制器的设计
0 引言 电压型PWM是指控制器按反馈电压来调节输出脉宽,而电流型PWM是指控制器按反馈电流来调节输出脉宽。电流型PWM是在脉宽比较器的输入端,直接用流过输出电感线圈电流的信号与误差放大器输出信号进行比较,从而调节占空比,使输出的电感峰值电流跟随误差电压变化而变化。由于结构上有电压环、电流环双环系统,因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,是目前比较理想的新型PWM控制器。 1 双环电流型PWM控制器工作原理 双环24V电源电流型脉宽调制(PWM)控制器是在普通电压反馈PWM控制环内部增加了电流反馈的控制环节,因而除了包含电压型PWM控制器的功能外,还能检测开关电流或电感电流,实现电压电流的双环
[嵌入式]
基于FAN6300谐振LED路灯电源的设计
  随着能源危机和气候变暖问题越来越严重,节能已成为全球普遍关注的话题。照明是人类消耗能源的一个重要方面,约占世界总耗能的20%,因此研究和开发绿色节能照明技术已越来越受到重视。大功率LED 路灯是通过直流电压点亮大功率LED 组来实现照明需求的一种新型照明方式,因此传统的用以驱动白炽灯、日光灯、节能灯、钠灯等光源的电源并不适合直接驱动大功率LED.本文根据大功率LED 的工作特性(V-I 特性)和LED 路灯的驱动要求,在通用的宽输入电压范围(90~265 V)内,利用电力电子技术和PWM 集成控制芯片,设计了一种准谐振高压恒流LED 路灯驱动电源,简化了电路结构,提高了电源的工作效率。   对于传统的硬开关反激式转换器,
[电源管理]
谐振反激式电源架构及应用
  低成本和高可靠性是离线电源设计中两个最重要的目标。准谐振 (Quasi resonant) 设计为设计人员提供了可行的方法,以实现这两个目标。准谐振技术降低了MOSFET的开关损耗,从而提高可靠性。此外,更软的开关改善了电源的EMI特性,允许设计人员减少使用滤波器的数目,因而降低成本。本文将描述准谐振架构背后的理论及其实施,并说明这类反激式电源的使用价值。   基本知识   现有的L-C 储能电路正战略性地用于PWM电源中。结果是L-C 储能电路的谐振效应能够“软化”开关器件的转换。这种更软的转换将降低开关损耗及与硬开关转换器相关的EMI。由于谐振电路仅在相当于其它传统方波转换器的开关转换瞬间才起作用,故而有 “准谐振
[电源管理]
<font color='red'>准</font><font color='red'>谐振</font><font color='red'>反激式</font>电源架构及应用
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved