远程地面传感器系统中传输电路的设计

发布者:HeavenlySunset最新更新时间:2010-01-11 来源: 现代电子技术关键字:无线传感器网络  GPS  信息传输  MSM7512B  调制解调 手机看文章 扫描二维码
随时随地手机看文章

     0 引 言

   无线传感器网络就是一种RGS系统(远程地面传感器系统),它是一种利用多种传感器作为综合情报采集元件,进行数据融合、编码等处理后,发送给指挥中心,处理还原后在监控平台显示出来的探测系统。它集传感器技术、图像探测技术、震动探测技术、声音探测技术、无线通信技术、数字编码压缩技术、信息融合技术及计算机技术为一体,是由多种高新技术集成的综合性技术。无线多传感器网络系统主要由以下几部分组成:

   (1)系统前端传感器及GPS模块——信号采集部分:主要是由图像、声音、震动以及红外传感器组成的探测单元和GPS模块构成,负责完成战场信息监测任务。
 
   (2)信息传输部分:主要负责将采集到的信息压缩编码和进行远距离无线传输。

   (3)指挥中心测控平台部分:主要完成对监测单元的远程控制及信号接收任务,并对搜集到的各种信息进行融合处理、分析。将处理结果提供给指挥中心人员,使他们能及时准确地把握战场态势,做出相应的决策。

   本文主要是对无线传感器网络中图像传输系统的硬件设计与软件编程的思想。

    1 发射端调制解调器硬件电路设计和工作原理

   调制解调器硬件电路在发射方和接收方,由于所需完成的任务不同,实际上是不一样的。发射方调制解调器电路原理图如图1所示。

   系统使用+5 V的电源由无线电台的电池变换后供给。MSM7512 B使用专用的3.579 545 MHz的晶体,由于其内部有接地电容,不用外接补偿元件;单片机使用频率为11.059 2 MHz的晶体,主要是为了在波特率设置时,可以取得准确的波特率,能有效避免定时器工作产生的积累误差,外接的补偿元件是二个30 pF电容。为了防止单片机程序运行时的误操作,应将单片机EA/VPP端(31脚)置高电平,确保单片机访问内部的程序存储器。由于调制解调芯片MSM7512B和单片机W77E58都支持TTL电平,所以单片机的第一串行通信口TXD,RXD可以直接与MSM75125B的XD和RD相连;单片机的P1.0,P1.1分别连接:

   MSM7512B的MOD2和MOD1,按通信的要求,在收发之间转换,以控制调制解调芯片的工作状态;P1.4则控制无线电台收/发状态的转换(PTT)。

   MSM75125B的AO和AI分别通过接口电路与无线电台的送/受话器相连。作为系统外部监视的显示电路全部由发光二极管和电阻构成,其中红色发光二极管D1为电源指示,亮则表示系统的初始化过程正确;黄色发光二极管D2为发送正确指示,系统每正确完成一次数据发送任务,它应闪烁一次;D3为载波检测指示,如果亮则表示调制解调器检测到了信道中的有效载波信号;D4为数据传输指示,系统在发送数据时它就开始闪烁,直至数据发送完毕。如果前端传感器有数据需要传送时,产生一个下降沿脉冲,触发单片机的外部中断INTO(P3.2),单片机响应中断后,将前方来的8位并行数据由P2口(P2.0~P2.5)读入,由于P2口内部有上拉电阻,因此作为输入口时,可用TTL或MOS电路驱动,而不要外加上拉电阻。W77E58的串行通信口2可留作系统的扩展口备用。

    2 接收方调制解调器与单片机的接口电路

   接收方调制解调器电路与战场传感器方调制解调器电路在单片机和调制解调芯片的使用和控制是一样的。所不同的是:单片机的第二串行口通过电平转换电路与计算机的RS 232C口相连,把接收到的数字信号传送给微机。接收方调制解调器与单片机的接口电路如图2所示。发光二极管显示电路作用也不完全相同,其中D1~D8为接收数据显示,它能把正确接收的数据以二进数的形式显示出来,D9为系统的电源指示,D10为发送正确指示,D11为载波检测指示,D12为数据传送指示。

    3 调制解调器与PC机接口电路的设计

   调制解调器与PC机接口实际上也就是调制解调器中单片机W77E58与PC机的接口电路,W77E58支持TTL电平,而微机串行通信口RS 232C支持EIA电平,因此在实现它们之间的串行通信时,必须设计电平转换电路,以满足它们各自的需要。

   电平转换电路是指挥中心方调制解调器与微机的接口电路,它也是数据无线传输系统硬件电路(指挥中心方)的一个组成部分。其工作过程如下:由调制解调器解调出来的数字信号,由单片机处理后,从W77E58的串行通信口2,经电平转换芯片MAX232、PC机的RS 232C口(DB9)和微机内部的UART,最后传递给CPU,在监控平台上显示出来。其电路原理图如图3所示。


    4 图像无线传输软件设计

   程序共分五个部分,三个主程序为:发送方单片机程序、接收方单片机程序和微机接收程序;两个子程序为:差错处理子程序、发送延时子程序。
 收、发双方及单片机与PC机之间的联络均采用软件“握手”信号联络。所有联络“握手”信号均为#0AAH,接收正确后应答信号为#00H,接收错误则应答为#0FFH。

   传感器一方在无数据需要传输时,通过单片机的编程控制使MSM7512B工作在省电模式,此时调制解调芯片(不含W77E58)的功耗仅为0.1 mW,可以最大限度地延长电池的使用时间。

   单片机与MSM7512B的逻辑控制关系:P1.O→MOD2,P1.1→MODl,P1.5→AOG,另外 P1.4→电台PTT,单片机控制MSM7512B和电台进行收、发转换。前端传感器有数据传输时,产生一个下降沿的脉冲信号启动整个系统的程序运行,数据传输完毕后,系统返回初始状态。单片机的P1.5口控制选择MSM7512B的的输出电平。

   设定单片机的2个串行口都工作于串行口工作方式1;定时器T1工作于方式2(自动重装初值),作波特率发生器,通过调整T1的初装值,用来选择1 200 b/s,600 b/s和300 b/s三种速率;定时器T2工作于方式1,作定时器,用来设计安排延时。

   在系统的设计过程中,为了减少电台灵敏度不高和信道质量差误码等影响,发送方需连续发5次“握手”联络信号,接收方在连续2次收到正确的联络信号以后,才确认是有效的联络予以响应,否则认为是干扰信号,不予以响应。这样既能减少各类原因造成的接收机程序不启动运行导致漏报的可能性,又能保证接收机不因干扰信号而误操作,减少误报的机率。另外综合考虑电台的收发转换和调制解调芯片的收发转化所需的各类延时时间,在设计程序时专门安排了一个延时时间。经过大量的实验,得出一个比较合适的延时时间,即不论通信哪一方,在由收转为发状态后,都先延时70 ms,因为时间太短了系统不能正常工作,太长了可能会影响数据的传输速率,降低数据传输的时性。系统数据发射端和接收端单片机程序流程图如图4所示。


    5 结 语

   通过对MSM7512B调制解调芯片性能特点的了解,设计出了发射端和接收端调制解调器的实际电路,然后简单介绍了具有双串口功能的单片机W77E58的性能特点后,给出了数据无线传输系统的接收方单片机与PC机之间串行通信的硬件电路图,并描述了Mo-dem与电台接口电路的设计过程,最后叙述了整个系统单片机软件的特点。从整体上给出了无线传感器网络数据无线传输系统的设计原理图。

   无线传感器网络涉及传感器技术、网络通讯技术、无线传输技术、嵌入式计算技术、微电子制造技术、软件编程技术等领域,具有跨学科的特点,在军事、民防、环境、生态、农业、健康、家庭和其他领域都有广阔的应用前景,在空间探索和灾难救助等特殊领域,传感器网络业有其得天独厚的技术优势。

关键字:无线传感器网络  GPS  信息传输  MSM7512B  调制解调 引用地址:远程地面传感器系统中传输电路的设计

上一篇:传感器自动识别装置在空调节能中的应用
下一篇:基于IEEE1451标准的IP传感器的设计与实现

推荐阅读最新更新时间:2024-03-30 21:30

基于SystemView的调频信号的调制解调仿真
模拟通信系统中,常对消息进行两种变换。第一种变换:将消息变为原始电信号,由于原始电信号通常具有很低的频率分量,一般不宜直接传输;第二种变换:将原始电信号(基带信号)变为适合信道传输的频带信号,在接收端再进行相反变换。这种变换和反变换通常称为调制和解调。调制解调技术在现代通信系统中起着十分重要的作用,他直接影响通信的质量和速度。调频信号是模拟调制系统中最常用的调制信号,如何高效准确地从调频信号中解调出原来原始信号是当今研究的一个重要课题。 1 鉴频基本原理 鉴频也就是将调频信号的频率ω(t)=ωc+△ω(t)与载波频率ωc作比较,得到差频△ω(t)=△ωmf(t),从而实现频率检波。在频率控制系统(AFC)中,频率检波电路必不可
[模拟电子]
特斯拉新专利:车辆更精确定位技术 赋能自动驾驶系统
随着自动驾驶车辆的出现,GPS精度变得越来越重要。据外媒报道,特斯拉(Tesla)研发了一种技术,可通过在车辆之间共享数据,从而实现更准确的定位。去年,特斯拉对该项技术提交了专利申请,名为“汽车定位技术”,本周美国专利商标局公布了该专利。 在专利申请中,特斯拉表示GPS定位有精度不准的问题。例如,带有定位接收器的智能手机可能能够在距离其5米之内确定自己的位置。当接收器靠近建筑物、桥梁、树木或其他结构时,定位的准确性可能会下降。尽管对于某些定位应用来说,此定位精度已经足够,但是对于自动驾驶等应用来说,需要更准确的精度。因此,尽管存在影响导航卫星信号的因素,但仍希望提供更准确的定位精度。 特斯拉的专利提供了几种解决方案,包括摄
[汽车电子]
专治车载导航“公主病”,关于定位准度的那些事
导航技术必学解决点的定位问题。 车载导航 导航动能的实现,离不开导航卫星,那么,车载导航的定位精度和定位速度,就决定了我们 导航仪 究竟准还是不准、快还是不快。因此,我们需要首先找出,哪些因素影响了车载导航正常发挥作用。   一、影响导航仪定位准度的因素 1、高楼大厦、山间峡谷、水下 卫星定位,实际上是一个系统工程,需要空间部分、地面控制系统、用户设备部分三部分共同发挥作用,而且是正常发挥作用。空间部分(卫星)、地面控制系统、用户设备( GPS 设备)之间,距离遥远,他们之间的信号传递质量,将直接影响卫星定位的准度和速度。   卫星定位时复杂的通信过程     上一篇中,我们提及A-GPS的存在,其产生发展的一大原因,是传统卫
[嵌入式]
一种基于MSP430的GPS和CDMA双接收计时系统设计
1 系统硬件设计方案 1.1 系统总体设计 基于MSP430单片机的GPS和CDMA双接收计时系统,是传统钟表计时技术与现代时频、微电子、通讯、计算机等多项技术的结合,通过接收不同形式的时间码,经内置微处理器解码处理,自动校准计时器走时,使该系统显示时间与标准时间自动保持精确同步。除保留传统机械时钟计时特点外,还增加了LCD数字显示,双显示方式。接收GPS、CDMA信号,实现双系统联合精确定时,在接收到精确的时码后,经数据处理器处理,即可自动校正时钟的走时误差,使每只时钟的走时均受统一精确的时码控制,从而实现了高精度计量时间的一致性,同时也可手动校时、接收时间信号,系统硬件框图如图1所示。 1.2.1MSP430MCU
[单片机]
一种基于MSP430的<font color='red'>GPS</font>和CDMA双接收计时系统设计
基于S3C2410的GPS通讯的实现
1 GPS的基本介绍 GPS(Global Positioning System,全球定位系统)是美国从20世纪70年代开始研制,历时20年,耗资200亿美元,具有在海、陆、空进行全方位实时三维导航与定位能力的新一代卫星导航与定位系统 。其地面监控系统的原理框图如图1所示。 1.1 GPS定位原理 GPS定位的基本原理是根据高速运动的卫星瞬间位置作为已知的起算数据,采用空间距离后方交会的方法,确定待测点的位置。如图2所示,假设t时刻在地面待测点上安置GPS接收机,可以测定GPS信号到达接收机的时间t,再加上接收机所接收到的卫星星历等其他数据可以确定以下4个方程式: ? 上述4个方程式中待测点坐标x,y,z和V
[网络通信]
如何为智能电表选择适合的PLC调制解调器方案
      近年来,在绿色节能意识的推动下,以智能电表为核心的智能电网成为欧美日中等诸多国家竞相发展的一个重点领域。如欧盟委员会强制要求2022年前所有欧盟成员国的电表都替换为智能仪表。美国也计划在每个家庭都安装智能仪表。中国也在2009年5月开始提出构建坚强智能电网的构想,准备投资高达4万亿元,计划经历当前的试点和2011年开始的全面建设等阶段后,到2020年基本实现构想。在此推动下,电网技术面临着一场重要的革命,而不只是简单的技术演进。     表1:传统电网与新的智能电网之间的简单对比。       在智能电网中,智能电表发挥关键的作用,可以使用户与电力系统之间实现互动。如一方面帮助电力机构精确了解用户的用电规
[电源管理]
如何为智能电表选择适合的PLC<font color='red'>调制解调</font>器方案
激发低功耗无线传感器网络中的“大数据”潜能
  据预测,到2020年将有大约500亿个采用无线通信方式的装置。据来自GSM联盟的数据,其中移动手持和个人计算机仅占1/4,其余的是采用非用户交互方式与其他机器通信的自主互连装置。当前我们的互联网正在快速发展成为无线装置互连的万维网 - 物联网(IoT)。   无线连接装置的可选方式有很多,最流行的包括Wi-Fi、Bluetooth、ZigBee和基于sub-GHz技术的解决方案。每种解决方案都有优缺点,在这个互连的世界里,以上无线技术将会共存(如图1所示)。然而,物联网的重要驱动力之一是低功耗无线传感器的出现,从智能电表到传输系统、从安全系统到楼宇自动化,传感器越来越广泛的用于各类应用中。对于无线传感器来说,可扩展性、范围、
[网络通信]
激发低功耗<font color='red'>无线传感器网络</font>中的“大数据”潜能
基于GPS的高精度无误差倒计时牌的设计
摘要:论述GPS精确计时系统的基本构成及系统功能,介绍以MCS-51型单片机构为核心的高精度时间显示系统的具体硬件实现方法,详细阐述系统各种软件模块的设计思路和执行流程。 关键词:全球定位系统;MCS-51;DS12C887;设计 1 引言 GPS是Global Positioning System的简称,是利用导航卫星进行测时和测距的全球定位系统。它具有精度高、全天候和全球覆盖能力。将GPS应用于时钟倒计时系统中能实现高精度时间显示功能。基于GPS的高精度、倒计时牌是卫星测时技术、计算机技术及通信技术三者的有机结合。从功能模块上看,整个系统分为GPS测时接收系统和时钟显示系统。它主要完成以下功能: %26;#18
[单片机]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新工业控制文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved