基于IEEE1451标准的IP传感器的设计与实现

发布者:GoldenSerenity最新更新时间:2010-01-13 来源: 机械与电子关键字:智能传感器  IP传感器  网络化传感  网络时延 手机看文章 扫描二维码
随时随地手机看文章

0 引言

  计算机网络技术与智能传感器技术的结合首次产生了网络化智能传感器这一全新概念。传感器可以象其它网络设备一样作为一个独立的网络节点直接在网络上传输、发布与共享数据,可在网络上任何节点对现场传感器进行在线编程和组态。这种结合极大地促进了传感器技术的发展和信息化的进程。现场总线技术的应用促进了传感器向智能化、网络化方向发展。在自动化过程的测量控制级,众多的智能传感器通过现场总线连接在一起构成分布式网络化测控系统。然而由于历史的原因,国际上并没有一个统一的现场总线标准,现存的Profibus,FF,Lonworks,HART和CAN等多种总线标准之间协议互不兼容,互操作性差,各种现场总线产品既不能互连互换,也不能统一组态,给系统的扩展、维护等带来不利的影响。要保证所设计的传感器完全满足这些协议比较困难甚至根本不可能,从而大大限制了网络化智能传感器在工业上的推广应用。

      业界迫切需要一个具有广阔应用前景并能被广泛接受的传感器接口标准,以解决传感器之间以及传感器 与网络的互联问题。

1 基于IEEE1451标准的智能传感器

  1994年IEEE和NIST联合发起合作制订“智能传感器接口标准IEEE1451”。经过多年的努力,分别于1997年和1999年通过了IEEE1451.2和IEEE1451.1网络化智能传感器标准,同时成立P1451.3和P1451.4工作组对IEEE1451.2标准进行进一步的扩展。IEEE1451标准得到了包括波音、惠普等在内的一些大公司的积极支持。采用通用的A/D或D/A转换装置作为智能传感器接口模块STIM的I/O接口,将应用的各种传感器的模拟量转换成具有标准规定格式的数据,连同传感器电子数据表TEDS与网络适配器NCAP连接,使得传感器数据可以按网络规定的协议登临网络而成为网络的一个独立节点,并具有网络节点的组态性和互操作性。TEDS存储了描述一个STIM所需的全部信息:制造商、数据格式、物理单位、序列号、测量范围以及校正系数等。这些数据可以提供给NCAP或系统的其它部分,以用于STIM的自我描述与校正。IEEE1451标准的应用极大地简化了网络化智能传感器设计。

2 基于嵌入式Internet的IP传感器

2.1 IP传感器的提出   

      IEEE1451标准在很大程度上促进了网络化智能传感器技术的发展。然而,自1997年IEEE1451.2标准颁布以来,该标准并没有得到广大传感器制造商的支持,对该标准的探讨还主要停留在学术研究的层面上,难以获得实际的应用。

      究其原因,主要表现在以下几方面。

   a.网络协议难以统一。IEEE1451.1标准提出的网络独立信息模型,从理论上解决了多种总线协议之间互不兼容和不能互操作所带来的传感器接口问题。然而,在各总线技术厂商为维护自身利益仍各自为阵,不愿推广使用的情况下,该标准难有作为。

   b.传感器独立接口不具有广阔的应用前景。IEEE1451.2标准规定了一个以串行外设接口协议为基础的数字接口标准TII,对于高速、高精的A/D和D/A转换器以及其它的高频场合,该接口将难以胜任。

   c.NCAP过于复杂而不易低成本实现。IEEE1451.1标准定义的网络独立信息模型是一个较为完整的通用模型,从实际应用的角度考虑,该模型过于复杂,难以实现,缺乏一个功能相对简单的智能传感器信息模型。   

      值得关注的是,相对于复杂和昂贵的NCAP,可以低成本实现的STIM,得到了众多传感器用户的喜爱,并推动网络化智能传感器标准从基于专有的总线技术向有着更加广阔应用空间的以太网方向发展。这种发展必将带来一个新的“事实上的”网络化智能传感器标准。此外,硅微电子技术的成熟使得在单个芯片中实现复杂结构的微电子机械系统成为现实,不仅解决了嵌入式微控制器与Internet连接的技术问题,同时也使得这种连接费用降低到工业应用可以接受的程度。这种技术的发展促使了基于嵌入式Internet的网络化智能传感器的出现,称之为IP传感器。IP传感器是指基于标准的TCP/IP协议,采用模块化结构将传感器和嵌入式Inter2net技术有机地结合起来的一种新型的网络化智能传感器,并作为一个独立的网络节点直接与计算机网络通信,从而使现场测控数据就近登临网络,在网络所能及的范围内实时发布和共享。敏感元件输出的模拟信号经A/D转换及数据处理后,由网络协议处理器实现TCP/IP数据包的封装和网络化传输。反过来,网络协议处理器又能接受网络上其它节点传给自己的数据和命令,实现对本节点的操作。

2.2 IP传感器原型实现   

      为了简化设计,降低成本,IP传感器在IEEE1451.1标准基础上对智能传感器信息模型进行了裁剪,保留了IEEE1451.2标准的STIM结构和功能,并对TEDS进行了扩展,以TCP/IP网络协议为载体,借助以太网传输传感器数据。IP传感器在整体结构上主要由两大部分构成:智能传感器接口模块STIM和网络协议处理器模块NPPM。NPPM主要用于TCP/IP协议报文的收发和解析。一方面,接收其它网络节点的数据和命令,进行报文解析后将指令交由STIM执行;另一方面,接收STIM的数据,完成报文封装后传输给指定的网络节点。   

      这里,网络节点既可以是一台PC机,也可以是其它的IP传感器。显然IP传感器实质上就是将STIM和NPPM集成在一起的一个具有以太网通讯功能的嵌入式设备,STIM用于传感器接口部分,NPPM用于网络接口部分。为了协调STIM和NPPM之间的数据通讯,IP传感器摒弃了难以实现的以同步串行数据传送协议为基础的TII接口,基于ISA标准设计了一个双端口数据缓冲器DPBI来保证2者之间可靠的数据交换和STIM扩展。基于通用的8位微处理器所开发的IP传感器,是以UBICOM公司的SX52BD为基础实现了简化的智能传感器信息模型NPPM,在ADI公司ADUC812的基础上完成了IEEE1451.2标准兼容的STIM结构,ADUC812内置的闪速数据存储器用于TEDS实现以支持分布式网络环境下IP传感器的自识别和自描述。IP传感器具有如下优点。

   a.以当今最为流行的网络通信协议TCP/IP为载体,利用廉价的Internet传输传感器数据。这意味着IP传感器有着更为广阔的应用空间。

   b.TCP/IP协议的应用使得技术人员可通过浏览器对IP传感器进行在线管理和组态。这意味着基于以太网实施分布式网络化测控成为可能。

       c.IP传感器具有的“即插即用”使得其能被动态的插拔到现有系统,而无须变动任何的网络结构。这意味着测控系统可以根据需要动态构建和重组。

   d.IEEE1451.2标准的开放性使得基于这个标准的IP传感器将具有很大的柔性。意味着基于IP传感器的系统具有良好的可扩展性和可维护性。典型的基于IP传感器的分布式测量控制系统是由一个公共的网络将多个IP传感器、控制节点及中央控制单元连接在一起。IP传感器用来实现参数测量并将数据传送给网络中的其它节点,控制节点是根据需要从网络中获取所需要的数据,并根据这些数据制订相应的控制方法和执行相应的控制输出。整个系统中,每个传感器节点和控制节点是相互独立且能够自治,控制节点和IP传感器的数目视应用要求而定,并能根据需要动态增加和减少。网络的选择既可以是企业内部的以太网,也可以直接是Internet。

3 IP传感器网络时延分析

    IP传感器是以TCP/IP协议为载体借助以太网传输数据的,其数据传输性能不可避免地受到网络时延的限制,而且将直接影响到IP传感器能否获得广泛的实际应用。在网络化测控系统中,IP传感器和控制节点通过以太网连接在一起。不同的路由选择使得传感器数据包沿着不同的线路传输,加上CSM/ACD固有的传输不确定性导致了IP传感器数据传输的不稳定性和传输时延的随机性。然而随着交换式集线路的使用、以太网数据传输速率的提高,这个问题已得到重要改善。通过限制网络负载,可大大降低发生数据冲突的概率,特别是在低负载的局域网应用场合,IP传感器还具有广阔的应用空间。大致上讲,基于以太网的分布式传感器网络中,设IP传感器总的网络时延为TTOT,则有:

      TTOT=Tc+Tv+Tp

式中  Tc———通讯时延 Tv———扰动时延 Tp———执行时延

   显然,仅Tc和Tv受网络通讯影响,是IP传感器网络时延分析的主要研究内容。值得一提的是,网络时延强烈依赖于网络负载,要构造精确的网络时延数学模型非常困难,在微观上没有规律可遵循,而只能从宏观上研究其统计特征。

4 试验与结果分析

   在Internet应用中,控制报文协议ICMP主要用于测试目的主机的网络可达性,任何收到ICMP回送请求的主机都将形成回送应答并把它返还给最初的发送者,所返回的数据往返时间RTT实际上是数据包从源端被发送到目的机后并返回源端的时间总和,可近似反映Tc,Tv总和的变化。

      本文基于ICMP协议测试IP传感器的网络时延性能,通过PC机等时间间隔的向IP传感器发送ICMP回送请求,统计RTT分布。令tvar=Tc+Tv≈RTT,这代表单次测试中的网络时延数值,Tvar代表相应的时延平均值。考虑到测试的代表性和IP传感器可能的应用模式,分局域网(IP传感器和PC机位于同一个子网)和广域网(IP传感器位于上海交通大学,PC机位于华中科技大学)两种情况在同一时间段(意味着近似的网络负载)对IP传感器网络时延性能进行了测试,测试了不同网络数据包下IP传感器平均时延的变化情况。IP传感器在局域网和广域网环境下tvar和Tvar的分布情况和统计学结果如图1、图2和表1所示。

  图1  数据包为1024字节时IP传感器的网络时延 

图2  不同网络数据包下IP传感器平均时延分布    

      从图中可以看出,如果不考虑数据包丢失和个别异常情况,虽然IP传感器的网络时延总是随机存在的,但网络时延的幅值以及幅值变化率却都是有界的,即网络时延tvar 总是在一定范围内随机变动。数据流量对IP传感器的网络时延有一定的影响,平均时延Tvar 随着网络数据包的增大而呈现显微的由小到大的变化过程。

   实验结果表明,经过一定的传输时延后(对于1024字节的数据包,考虑到90%的概率,局域网为23~36ms,广域网为408~580ms) , IP传感器可基于以太网与其它的网络主机进行可靠的数据交换,可广泛应用于非严格实时要求的网络化传感、测量系统中完成现场设备的信号采集。

5  结束语

   21世纪将是嵌入式Internet的时代,据有关专家预测,下一代网络设备中嵌入式设备将大大增加,70%的将是嵌入式设备。如果嵌入式传感器设备能够连接到Internet,则可以方便、低廉地将信息传送到世界上任何一个地方。可以预见,随着以太网等网络技术的完善和成熟,基于嵌入式Internet技术所开发的IP传感器必将在分布式网络化传感、测量和控制应用中得到广泛的应用,并将带来测控系统本身新的变革:现场传感器将与普通计算机一样成为网络中的独立节点,传感器信息可以不受时间和空间的限制跨越网络所能及的任何领域。

关键字:智能传感器  IP传感器  网络化传感  网络时延 引用地址:基于IEEE1451标准的IP传感器的设计与实现

上一篇:远程地面传感器系统中传输电路的设计
下一篇:“十二五”将推智能能源网,覆盖水电气热

推荐阅读最新更新时间:2024-03-30 21:30

基于IEEE1451.1的网络化智能传感器设计
    摘要: IEEE 1451是一种从传感器或执行器到微处理器及网络之间的硬件和软件接口标准。本文根据1451.1标准,研制面向Internet的网络化智能机器人手爪传感器系统,并给出硬件设计框图和软件流程。     关键词: 网络化智能传感器 IEEE 1451.1 机器人手爪 引言 传感器与网络相连,是信息技术发展的一种必然趋势。然而控制总线网络多种多样,千差万别,内部结构、通信接口、通信协议各不相同,以此来连接各种变送器(包括传感器和执行器),则要求这些传感器或执行器必须符合这些标准总线的有关规定。由于技术上、成本上的原因,传感器的制造商无法使自己的产品同时满足各种各样的现场总线要求,而这
[传感技术]
智能传感器技术在呼吸监视仪中的应用
当今在有智能传感器技术为捡测头的呼吸医疗监视仪已经闻世, 能以此对各种情感和呼吸之间的联系作大量的研究,并且用来真实纪录一个人的呼吸状况及其变化. 1.呼吸医疗监视仪与智能传感器技术(见图1所示). 1.1、 呼吸医疗监视仪 用来监视呼吸状况,并能给出大致的呼吸深度。这个监测仪监测一些可以用来评价焦虑程度的重要参数:呼吸频率、呼吸的均匀程度以及呼气和吸气之间的间歇。平静、积极的情绪通常会导致呼出长于吸入,二者的时间之比从一个方面揭示人的焦虑程度。相对较高水平的胸呼吸(相对于腹呼吸)也可说明焦虑程度。对于胸呼吸的观察可增加监视仪的可视信息。 1.2、 智能传感器技术 图1中的监视仪采用硅压阻式传感器(P
[传感技术]
基于智能传感器的温/湿度监控系统设计
1引言 弹药从出厂到部队作战或训练使用以前主要存放在仓库中。在长期的储存过程中,弹药虽然处于宏观静止状态。但其质量不断发生变化。这是因为弹药主要由金属和装药组成.在长期储存过程中,由于温,湿度的影响。金属会锈蚀.从而使金属部件的强度降低。表面机械性能变坏,严重影响弹药的使用.甚至会造成重大事故。温,湿度还会使弹药装药的物理和化学性质发生变化.从而使其失去应有的战技要求。因此,温,湿度是弹药质量发生变化的主要矛盾。根据我军的仓库条件、我国的气候条件和目前仓库的管理水平.通常规定最高温度不超过30℃.最大湿度不超过。70%.即通常所说的“三七”线。 传统弹药仓库的监控系统采用的是干,湿球湿度计、毛发湿度计、湿敏电阻器或由普通的温,
[单片机]
基于<font color='red'>智能传感器</font>的温/湿度监控系统设计
基于MC9S08SH4和AD7705的智能传感器系统设计
近年来随着传感器技术和信息处理技术的快速发展,工程应用中对传感器的测量精度、数据传输距离和信息处理能力都提出了更高的要求。为了克服普通力敏、光敏传感器抗干扰能力差、传输距离短、调零难、测量节点无法直接与上位机通信等缺点,本文设计了一种以Freescale MC9S08SH4单片机 和AD7705为核心构成的智能传感器系统,在普通传感器上增加了软件调零、浮点数据处理、自动补偿、与上位机双向通讯、标准化数字输出等功能,可以很方便地实现上位机对数据的实时采集和处理,并具有测量精度高、结构紧凑、抗干扰能力强等特点。 1 系统组成   智能传感器系统由信号调理电路、A/D转换电路、主控电路、调零电路、RS-485通信电路和电源电路等模块组成。
[工业控制]
基于MC9S08SH4和AD7705的<font color='red'>智能传感器</font>系统设计
智能传感器模拟人脑解读大数据
德国电子公司罗伯特·博世(Robert Bosch)认为,为了克服大数据(Big Data)的挑战,我们必须通过让各个层面智能化的方式打造解决方案,包括从边缘 传感器 到集中的传感器中枢,再到云端数据分析。 所幸我们的大脑拥有最智能的传感器——包括眼睛、耳朵、鼻子、味蕾和触觉灵敏度,能够因应物联网(IoT)的需要塑造我们的电子大数据解决方案。 Bosch Sensortec业务开发主管Marcellino Gemelli在国际半导体产业协会(SEMI)最近举行的年度MEMS与传感器高峰会议(MEMS & Sensor Executive Congress; MSEC)上说:“我们必须将大数据的问题馈入基于人脑的模型产生器,然后用这
[安防电子]
基于IEEE1451.1的网络化智能传感器设计
    摘要: IEEE 1451是一种从传感器或执行器到微处理器及网络之间的硬件和软件接口标准。本文根据1451.1标准,研制面向Internet的网络化智能机器人手爪传感器系统,并给出硬件设计框图和软件流程。     关键词: 网络化智能传感器 IEEE 1451.1 机器人手爪 引言 传感器与网络相连,是信息技术发展的一种必然趋势。然而控制总线网络多种多样,千差万别,内部结构、通信接口、通信协议各不相同,以此来连接各种变送器(包括传感器和执行器),则要求这些传感器或执行器必须符合这些标准总线的有关规定。由于技术上、成本上的原因,传感器的制造商无法使自己的产品同时满足各种各样的现场总线要求,而这
[应用]
中国高端芯片联盟发布智能传感器产业地图
  近日中国高端 芯片 联盟和中国信息通信研究院发布智能 传感器 的产业地图。产业地图从产业链结构和产业空间布局两个维度构建。产业链结构上,智能 传感器 产业地图勾画出了从研发到设计、制造、封装、测试、软件、 芯片 和系统应用8个方面的产业链主要企业和4个主要应用方面。产业空间布局上,则主要关注长三角、环渤海、珠三角、中西部四大聚集区域。下面就随网络通信小编一起来了解一下相关内容吧。   智能 传感器 产业政策已经指明了行业发展方向,在业内人士看来,根据指南,一是可重点关注MEMS 传感器 技术和智能 传感器 发展,尤其是面向消费电子、汽车电子、工业控制、健康医疗等重点领域的应用;二是关注产业集聚区和龙头公司。   上市公司层面
[网络通信]
智能传感器的蓝牙协议栈与SoC结构设计
摘要:通过对蓝牙协议栈和智能传感器功能要求的分析,讨论用于智能传感器设计的嵌入式蓝牙协议栈SoC的基本结构,以及功能组成要求。根据讨论结果,设计相应的SoC电路结构。 关键词:蓝牙 基带 智能传感器 SoC 引 言 蓝牙技术是一种无线数据与数字通信的开放性规范。它以低成本、近距离无线连接为基础,为固定与移动设备建立了一种完整的通信方式和技术。蓝牙技术的实质是建立通用无线接口及其控制软件的标准,使移动通信与计算机网络之间能实现无缝连接,由此,为不同厂家生产的便携式设备提供了近距离(10m"100m)范围内的互操作通道。   在工业控制系统和许多应用领域,随着电子技术的发展,目前控制器和传感器已经实现了智能化。在一般的传
[应用]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新工业控制文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved