高压带电作业自动剥皮器控制系统的研制

发布者:as8849402最新更新时间:2011-01-27 来源: 微型机与应用关键字:高压带电作业  功率驱动  D/A转换器  电流反馈 手机看文章 扫描二维码
随时随地手机看文章

    为了提高带电作业的自动化水平和安全性,减轻操作人员的劳动强度和强电磁场对操作人员的人身威胁,从20世纪80年代起许多国家先后开展了带电作业机器人的研究。2002年我国也进行了高压带电作业机器人产品化样机的研制。目前带电作业所用的剥皮器是高压带电作业机器人的专用作业工具,其主要功能是剥除10 kV配电线路绝缘外皮,为完成其他作业任务做好准备[1]。目前应用的剥皮器多是手动控制,为了适应高压带电作业机器人应用的要求,本文所研究的PWM功率驱动装置的设计采用了高集成度模块,并由ATMEGA128单片机控制,具有过流、过载、过压保护功能。这种剥皮器遥操作控制系统通过遥控器进行远程控制,比手动剥皮器更加安全、可靠,操作也更加方便,满足了高压带电机器人作业任务的要求。

1 控制系统的总体设计

    如图1所示,将遥控剥皮器的硬件设计分成5层,各层完成功能分别是:层1是执行结构,是机器人运动的基础;层2是驱动系统,包括电机驱动器、系统供电和电流反馈电路。由于遥控剥皮器电机的过载电流能达10 A,所以选用了具有H桥的SA60。SA60是一个PWM 型功率输出芯片, 电路提供给电机的电源电压最大可达到80 V, 能连续向负载提供10 A 的电流。最大模拟输入电压8 V, PWM载波频率可达250 kHz, 而效率可以高达97%。通过12 V串行DA转换芯片控制电机的方向和速度,DISABLE引脚控制电机的上电和掉电。层3是系统接口部分,包括DA转换接口。输出电压为4 V~8 V。层4是ATMEGA128核心板部分,包括JTAG、复位电路和晶振;层5是系统功能扩展板,实现与遥控器的通信。由于超再生式接收模块具有电路简单、成本低廉等优点,温度适应性强,接收灵敏度更高,而且工作稳定可靠,抗干扰能力强,所以无线接收模块选用了抗干扰能力强的超外差接收模块[2]。

2 电源电路设计

    电磁干扰必须包括3个要素,即电磁干扰源、电磁干扰传递途径及接收电磁干扰的响应者。这3个要素相当复杂,不同的场合有不同的表现。如图2所示,为了防止电机驱动电路和控制电路相互干扰,通过电感L2实现不共地。在电路排版中,由于存在地线的阻抗,因而会产生一定的电位差。由于电位差的存在,就必然给电路的工作带来影响。因此在电路板排版中,要一点接地。为了防止控制部分和电机驱动部分电路发生短路,在前序电路都加上自恢复保险丝。自恢复保险丝是一种新型高分子聚合材料制成的器件,当电流低于额定值时,它的电流电阻只有零点几欧姆。而当电流大到一定程度,它的阻值迅速升高,引起发热,而越热,阻值越大,从而阻断电源电流。剥皮器在作业过程中,由于受力不均匀,电压会被拉低,所以在电源部分加上了12 V升压芯片MAX734。由于电池充满时,电压能达14.4 V,超过了MAX734的供电电压,所以在MAX734的前端反接了一个3.3 V稳压二极管。

3 驱动电路的设计

    PWM功率驱动装置利用大功率管的开关特性来调制直流电源,使其按固定的频率通、断。改变一个周期内通、断时间的长短,即改变输出电压的“占空比”,从而改变平均电压,控制输出功率。其结构可分为两大部分:从主电源将能量传递给负载的电路称为功率转换电路,其余部分为控制电路。改变脉冲占空比可以实现电动机转速的调节,但首先需要将控制转速的指令信号转换为具有相应占空比的脉冲信号。PWM信号产生的基本方法是,将控制指令信号与固定频率的三角波或锯齿波信号进行比较,从而产生占空比正比于控制指令电压的脉冲信号。如图3所示,SA60自带555定时器外接270 pF的电容产生45 kHz的三角波,当控制指令信号电压大于或等于三角波电压时,输出信号为比较器电源正电压VCC;当控制指令信号小于三角波电压时,输出信号为电源地信号0 V。当电动机由于减速等原因而处于再生制动状态时,传动系统中所存储的机械能会经电动机转换为电能,并通过功率器件回馈到直流母线侧。这些能量一般储存在功率主电路的储能元件中,若不存在能量释放电路,将会导致直流母线侧电压升高,升高的这部分电压称为泵升电压。在这种情况下,如不采取保护措施,就有可能损坏功率器件或储能元件。电路中加上了RC阻容网络,以抑制瞬时泵升电压的产生。电阻选用100 Ω 2 W,电容选择1 000 pF 100 V[3]。

    设置过电流保护电路。过电流保护电路由电流检测环节、运算放大器、比较器等构成。通过0.01 ?赘精密电阻对SA60的ISENSE A和ISENSE B引脚电流取样,取样电压经过单电源运算放大器LM324的相加和放大10倍后,与一个2.5 V基准值共同输入到电压比较器LM393,比较输出电流是否超过25 A。

    下面求电压放大器的增益计算公式:

4 单片机控制电路设计

4.1 无线接收电路

    超再生式接收机具有电路简单、成本低廉等优点而被广泛采用,超外差接收机虽然价格较高,但温度适应性强,接收灵敏度更高,而且工作稳定可靠,抗干扰能力强,所以无线接收模块选用了抗干扰能力强的超外差接收模块。遥控器选用和接收模块配套的远距离遥控器。电池使用A23电池,采用白色的优质塑料外壳,硅胶按键,带拉杆天线。遥控器背后有活动的电池舱盖,可以方便地更换电池。发射距离300 m~500 m。

4.2 模拟输出电路

    图4所示,LTC1257是单电源供电,12位输出DA转换芯片。采用LT1021基准芯片提供8 V的参考电压,由于VCC比VREF大2.7 V,所以LTC1257能正常输出0 V~8 V。与控制器的接口采用SPI总线方式通信,接口分别为CLK、Din、Dout,控制方便。

.3 ATMEGA128控制单元

    ATMEGA128控制单元负责控制模拟信号的输出、过流信息的采集和无线通信。ATmega128为基于AVR RISC结构的8位低功耗CMOS微处理器,具有快速、灵活、集成度高,加密性强和易实现等诸多优点。ATmega128具有128 KB的系统内可编程Flash、4 KB的E2PROM、4 KB的SRAM、53个通用I/O口线、32个通用工作寄存器、实时时钟RTC、4个灵活的具有比较模式和PWM功能的定时器/计数器(T/C)、2个USART、面向字节的两线接口TWI、8通道10位ADC、具有片内振荡器的可编程看门狗定时器、SPI串行端口。由于其先进的指令集以及单周期指令执行时间,ATmega128的数据吞吐率高达1 MIPS/MHz,比普通的复杂指令集微处理器高10倍,从而可以缓解系统在功耗和处理速度之间的矛盾[4]。

5 断线钳系统的软件设计

   软件设计主要包括:接收到的控制命令码的解码程序、电机调速的DA转换程序和过载保护程序。

5.1 解码程序

 编码芯片PT2262发出的编码信号地址码、数据码、同步码组成一个完整的码字,解码芯片PT2272接收到信号后,其地址码经过两次比较核对后,VT脚才输出高电平,与此同时相应的数据脚也输出高电平。如图4,采用中断的方式来接收发射码并进行解码获得控制命令。

5.2 DA转换程序

 如图5所示,由于所采用的减速电机启动和停止电流很大,可以通过改变加载电机两端的电压来实现加减速。基于简单实用考虑,采用DA模拟量调速方式。而软件的做法是通过设置DA转换芯片内部的寄存器来达到,且软件调整量指标更高,调整更可靠、更方便、更准确。为了实现功率模块的保护,当采集到过电流信号时,采用DA输出方式控制电机的输入电压来调节功率模块SA60的输出电流。

    本文所介绍的ATMEGA128单片机控制的PWM功率驱动装置,采用了集成化的芯片设计,因而整个系统的可靠性和集成度得到很大提高。PWM功率驱动装置的输出满足了TEC模块的电气特性要求。另外,系统由ATMEGA128单片机控制,程控性好,易于操作,提高了分辨率和精度,系统实时运行的信息可反馈到ATMEGA128 控制系统,以对系统进行监护并处理故障。在实际应用中,自动剥皮器剥皮效果良好,具有很大的实用价值。

关键字:高压带电作业  功率驱动  D/A转换器  电流反馈 引用地址:高压带电作业自动剥皮器控制系统的研制

上一篇:高新测控技术在水利水电工程中应用
下一篇:本土IC设计商能否借智能电网崛起?

推荐阅读最新更新时间:2024-03-30 21:33

并行D/A转换器AD7237A及其接口设计
1. 引言 AD7237A是美国AD公司推出的一种LC2MOS型双路12位数模转换器。它具有高速、低功耗、宽工作电压等特点,在工业上得到了广泛应用。本文简要地介绍了AD7237A的基本结构和引脚功能。然后,详细地阐述了它在计算机接口扩展卡设计中的应用方法。 2. AD7237A的基本结构及引脚功能 AD7237A是一种完全的双路12位电压输出数模转换器,带有输出放大器和内置参考电压源。并具有下列主要特点: ●高速:典型数据建立时间为30ns; ●低功耗:在单极输出的情况下,典型功耗为165mW; ●工作电压为:12~15V; ●(8+4)位数据锁存结构。 AD7237A是工业型AD7237的改进型,与AD7237的
[电源管理]
并行<font color='red'>D</font>/<font color='red'>A转换器</font>AD7237A及其接口设计
不同电源及功率等级的LED照明驱动器方案
随着led技术的发展,LED的应用已经从传统的小功率便携产品背光拓展至中大功率的室内照明、室外照明及手电筒等应用。根据驱动电源的不同,LED照明通常可以划分为交流-直流(AC-DC)LED照明、直流-直流(DC-DC)LED照明电源以及电池供电的LED手电筒等不同类型,LED灯具及其功率也各不相同,如3WPAR16、3×2WPAR20、10W/15WPAR30、15W/22WPAR38、1WG13、3WGU10、1WMR11、3WMR16、3W/9W/15W嵌灯、1W-3W阅读灯等。 1,AC-DCLED照明解决方案 安森美半导体在AC-DC电源供电的LED照明应用中,提供各种离线控制器及功率因数校正(PFC)
[电源管理]
不同电源及<font color='red'>功率</font>等级的LED照明<font color='red'>驱动</font>器方案
看高集成度低功率LED灯泡驱动器LYTSwitch-0如何帮助用户实现低成本设计
近前,Power Integrations 公司(简称PI)推出了系列高集成度低功率LED灯泡驱动器LYTSwitch-0,具有优秀调光性能的LYTSwitch家庭又新增了一员。 LYTSwitch-0器件的效率达到90%以上,可在典型应用中以优于+/-5%的调整精度提供恒流输出。其功率因数在115 VAC下大于0.8,在230 VAC下达到0.55,可满足ENERGYSTAR V1第3稿的北美消费类照明标准,以及欧洲生态设计指令Lot 19第2部分标准。非常适合对成本敏感、非隔离、非调光GU10灯泡和其他空间受限的灯泡应用。 LED灯泡成本持续走低对LED驱动器的挑战 在 LED灯替代白炽灯的大趋势下, LED灯的成本一直是
[电源管理]
看高集成度低<font color='red'>功率</font>LED灯泡<font color='red'>驱动</font>器LYTSwitch-0如何帮助用户实现低成本设计
驱动功率 LED 照明应用的一种新方法
在诸如路灯、高棚灯体育场照明以及其他许多高功率照明应用中,其发展正转向使用 LED 作为光源的固态照明。这是因为其更高能效和更低维护频率的价值定位,而这两个因素也证明了这种转换的合理性。 在此类高功率照明应用中,人们考虑使用各种各样的方法来驱动这些照明灯。本文中,我们将讨论一种新的拓扑,它以更高的效率和更低的系统成本驱动多个 LED 串而著称。 要想充分地了解这种拓扑的优点,我们就必须首先研究现在考虑使用或者已经在低功率 LED 应用中取得较好效果的各种方法。 一种简单的方法是,使用一个能够将电源电压转换为 DC 输出电压(例如:12 伏或 24 伏)的电源;然后,让并联 LED 串在这个电源下工作,并在每
[电源管理]
简单,高效的恒功率驱动IC方案
摘要:结合电流检测放大器和倍增器(MAX4211F)和两个电流通过负载上的电压,并提供在它的一个输出(功率输出)的电压成正比,这些变量,比例为负载的瞬时功率。外部运算放大器产生相应的PWM(脉宽调制)输出信号,控制在与负载系列P通道MOSFET。   执行器和传感器系统有时包括电阻性负载,需要控制, 恒功率 驱动器,无论负载的电阻值。如果该值以经营条件的变化,然后一个简单的控制和调节电压或电流不足以保证恒功率交付。在图1中的电路提供了利用这些恒功率的电阻特性,并提供一个直流驱动可变占空比,具有简单,成本低,效率高实施。   图1。该电路可提供恒功率负载,如内文中所述的限制。   一个组合电流检测放大器和倍增器(MAX4211
[模拟电子]
简单,高效的恒<font color='red'>功率</font><font color='red'>驱动</font>IC方案
在低功率压缩机驱动电路,ST超结MOSFET与IGBT技术能效比较
摘要 电机驱动市场特别是家电市场对系统的能效、尺寸和稳健性的要求越来越高。 为满足市场需求,意法半导体针对不同的工况提供多种功率开关技术,例如, IGBT和最新的超结功率MOSFET。 本文在实际工况下的一个低功耗电机驱动电路(例如,小功率冰箱压缩机)内测试了基于这两种功率技术的SLLIMM™-nano(小型低损耗智能模压模块),从电热性能两个方面对这两项技术进行了详细的分析和比较。 1. 前言 家电厂商不断地寻求更高的产品能效,以符合日益趋严的能效法规,达到降低能耗和节省电费的目的。更具体地讲,主要需求是降低设备在低负载稳态以及满载工况下的功率损耗。因此,研发高能效开关,特别是在低电流条件下实现高能效,是达到这个
[半导体设计/制造]
在低<font color='red'>功率</font>压缩机<font color='red'>驱动</font>电路,ST超结MOSFET与IGBT技术能效比较
功率稳定可调LD驱动电路的设计
摘要:功率稳定可调的激光二极管(LD)在精密光电检测和光纤通信系统中应用广泛。介绍了一种单片机控制激光二极管输出功率的方法,针对SANYO 30mW红光LD设计了驱动电路,其驱动电流在0~100mA之间可调,最小可调量 1.3 电路模块选型及计算 1.3.1 差分放大模块 由图1(b)可见,监测电流很小,尤其当激光器输出功率 1.3.3 电压/电流转换 由于上述D/A转换器的输出无缓冲,故采用运放与场效应管组成的共源放大电路。其中运放对输出有缓冲作用。 图4电路中V1为D/A的输出电压,场效应管的漏极-源极的电流(即LD的驱动电流)为: 由上述可见,驱动电流由V1及小电阻Rs决定。在实际中取R
[网络通信]
低压低功耗CMOS电流反馈运算放大器设计
  放大器作为集成电路的一种重要的组成部分是国内外研究的热点。电压模式放大器有一个明显的缺点就是随着被处理信号的频率越来越高,电压模式电路的固有缺点开始阻碍它在高频高速环境中的应用。主要由于闭环增益和闭环带宽的乘积是常数,当带宽向高频区扩展时增益按比例下降,而且在大信号下它的输出电压转换速率也很低。为克服这些缺点,本文设计了低压状态下的运算放大器电流反馈运算放大器。运算放大器电流反馈运算放大器(CFOA)被广泛应用在模拟信号处理中,比如模数转换(ADC),滤波器以及许多其他通信系统中。运算放大器电流反馈运算放大器相对于电压反馈运算放大器的一个显著的优点就是有较快的转换速率和与增益设置无关的带宽, 80年代末期,基于互补双极工艺发
[模拟电子]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新工业控制文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved