单片机控制下的家居温度监控系统设计

发布者:TranquilDreams最新更新时间:2011-08-25 来源: EEWORLD关键字:单片机 手机看文章 扫描二维码
随时随地手机看文章

 引言

  温度是物联网家居系统中一个十分重要的物理量, 对它的测量与控制有十分重要的意义。随着各类物联网家居的监控日益改善,各类器件的温度控制有了更高的要求,为了满足人们对温度监控与控制, 本文设计了物联网家居系统中基于单片机的多路无线温度监控系统。

  随着信息科学与微电子技术的发展, 温度的监控可以利用现代技术使其实现自动化和智能化。多路无线温度监控系统就是朝着这一目标进行设计的。本次设计要求利用单片机及无线传输模块实现无线温度监测系统,实现温控范围调节及其超温范围报警。

  1 技术要点

  由于本系统是一个实时监控的系统, 对温度的采集控制是实时的, 所以温度采集的时间间隔, 数据发送接收的时间差,单片机与PC 机之间数据的传送速度以及上位机程序对数据的分析处理是本系统的关键。通过对温度传感器,无线模块的优化选择,实现单片机与PC 机通过高速USB 接口进行通信及对上位机代码的优化实现本系统的实时监控功能, 同时还要考虑的是温度传感器的各个参数,无线模块的参数,以及硬件电路的优化搭建问题。

  2 硬件及软件设计

  为了使系统能够最优化的工作, 系统的硬件器件选择将是十分重要的问题。

  (1)温度传感器的选用

  系统是做温度监控的, 首要的工作就是如何选取温度传感器, 正确的选择温度传感器对系统的性能和价格有着重大的影响。就温度传感器的温度测量范围、精度、响应时间、稳定性、线性度和灵敏度。等几个因素的比较分析,本系统选用的是美国DALLAS 半导体公司生产的DS18B20 温度传感器。选用该传感器的原因有: ①DS18B20 与微处理器仅需要一条线即可实现双向通讯,简化连接难度;②无需其他的AD 转化器件,降低成本, 也减少了硬件制板的费用; ③可供使用电压范围大:3.0V 到5.5V 都可以使用,器件的功耗较低;④测温分辨率高,最高可达0.125 度,便于温度精确控制;⑤支持多点测试,多个DS18B20 可以并联在一根线上,实现多点测温。

  (2)无线模块的选用

  本系统是多点监控, 同时他的数据传输是通过无线传输的,所以无线传输模块的需要支持多点的数据的传送。考虑稳定性, 传输数据的速度, 错误率等方面, 本系统选用的是NRF905 无线数据传输模块,选择该模块的原因有:①433MHZ开放ISM 频段免许可证使用,无需额外申请频段;②传输速率高,最高数据传输速率可达50KB,满足实时监控的需要;③自带有CRC 纠错功能,抗干扰能力强。所需电压仅3.3V,功耗低;④125 个频道,支持多点通信,满足系统多点监控的需要。

  (3)主控芯片选用

  ATmega16 是ATMEL 公司推出的一款基于AVR RISC 构架的低功耗CMOS 的8 位单片机。ATmega16 在16MHz 时有16MIPS 的运算速度,具有两周期硬件乘法器,从而使得设计人员可以在功耗和执行速度之间取得平衡, 且非易失性程序和数据存储器资源较大能满足程序代码设计需要。外设资源丰富:2 个具有独立预分频器和比较器功能的8 位定时/计数器;一个独立预分频器和比较/捕捉功能的16 位定时/计数器;支持4 路PWM 输出、8 路10 位ADC。支持TWI 接口、USART、SPI 接口多机通信满足扩展功能的需要。

  (4)其他外围器件

  USB 与PC 机通信中USB 控制芯片PDUSBD12,显示模块1602,报警蜂鸣器等。

 2.1 系统的硬件连接方法

  硬件方面主要由两部分组成, 温度采集发送部分和数据接受分析控制部分。

  2.1.1 温度采集发送部分

  主要的连接器件有NRF905 无线数据传输模块,DS18B20温度传感器采集模块,1602 显示模块,报警模块,及温度异常处理模块。其连接方法如图1 所示。主控芯片M16 通过SPI 总线协议向无线模块发送配置信息,使其工作初始化。温度传感器与M16 的连接使用的是单总线协议,来采集温度。显示芯片1602 来显示采集到得温度,同时使用蜂鸣器作为报警装置,当温度有异常时单片机会控制加热设备或降温设备来对异常进行处理。

  2.1.2 数据接收分析控制部分

  主要的连接器件有无线数据传输模块,USB 传送模块,和PC 机构成。其电路连接如图2 所示。同样主控芯片M16 通过SPI 总线协议向无线模块发送配置信息,使其工作初始化。接收到温度后通过PDUSBD12 芯片利用USB 协议将数据发送到PC 机上,可以直接在VC 界面上显示。PC 机可以自动分析数据是否存在异常,当存在异常时,PC 发送控制信号来远程控制加热或降温设备对异常进行处理,同时发出报警信号,这样可以将危险降到最低,实现自动化与智能化。

图1 数据采集与发送   图2 数据接收与分析

2.2 软件程序的设计

  由于系统由两个模块构成, 所以软件程序的设计也分为温度采集发送模块程序设计和数据接受分析控制模块程序设计。

  2.2.1 温度采集发送模块

  主要需要设计的程序有NRF905 的内部寄存器配置,温度传感器温度采集程序,液晶显示模块程序,报警系统程序。程序流程图如图3:

图3 主程序流程图

  2.2.2 数据接受分析控制模块

  主要需要设计的程序有NRF905 的内部寄存器配置,USB模块的驱动编写,上位机程序的建立,由于篇幅有限,源代码及流程图不再给出。

3 系统的工作流程

  本系统主要由两个模块组成, 温度采集发送模块和数据接收监控模块。

  3.1 数据采集发送模块

  该模块的主要功能是采集温度和发送数据。主控单片机发出命令开始有DS18B20 进行温度采集, 温度传感器将采集到的温度传回主控芯片,在1602 上进行显示,然后主控芯片通过SPI 总线将数据传送给无线发送模块NRF905,由无线发送模块将数据发送出去。同时主控芯片会检测温度是否异常,当温度出现异常时会发出报警信号,同时启动异常处理模块。

  具体工作流程如图4:

图4 采集发送模块工作流程

  3.2 数据接收监控模块

  该模块的主要功能是接收和处理数据, 由单片机控制无线模块接收数据, 同时控制USB 模块将数据发送到PC 机上去,PC 机接收到温度后会对温度进行分析处理,当温度由异常时,会发出报警信号,同时通过将控制指令发送至单片机,通过无线模块来远程控制异常处理模块执行工作, 从而实现异常自动处理和双报警, 从而最大限度的确保被监控地的预警和安全。具体工作流程如图5:

图5 接受监控模块工作流程

  4 结语

  对本系统进行远距离具体温度测试有, 经数据对比发现实地温度采集与上位机显示数据完全吻合, 且能实现实时温度监控。同时可以通过PC 机对单片机进行远程控制,性能稳定。

  本系统采用的数据传输是通过无线技术实现的, 不仅仅可以用在物联网家居上,还可以在很多环境条件恶劣,且不容易铺设电缆的地方使用,同时移动起来比较方便,在不久的将来会有更大的利用价值。

关键字:单片机 引用地址:单片机控制下的家居温度监控系统设计

上一篇:信息钮扣iButton的电子锁设计原理
下一篇:基于单片机的酒精含量探测器设计

推荐阅读最新更新时间:2024-03-30 21:48

一种应用于足浴器的温控器的研制
足浴器的设计难点在于成本控制和温度控制系统的设计。近年来,开关电源技术的逐渐成熟,为小功率电源供电提供了一个高效率且低成本的方案,摒弃了传统的变压器降压、整流、三端稳压的低效率供电方式。而通过软件算法完善,例如PID算法的运用,可减少部分硬件开销,降低成本及系统复杂度,提高系统的稳定性。设计结合以上技术,着眼于成本最小化,性能最大化,实现了LED温度显示,双按键目标温度调节,高精度温控功能。由于主控芯片AT89C2051只有两组共16个IO引脚,2 kB的内存,因此需合理运用IO资源,程序设计简洁,合理分配内存空间。 1 系统结构设计 系统由供电、采样、按键、显示及单片机部分组成。 传感器负责采集温度值,传递给MC
[单片机]
一种应用于足浴器的温控器的研制
关于STM32系列微控制器的几点认识
STM32系列微控制器是意法半导体旗下的产品,凭借着自身的高性能,低功耗,丰富的数字外围设备和强大的电气处理能力等优势,广泛地应用在工业控制及自动化,消费类电子产品,智能硬件等领域。很多院校和嵌入式培训机构都选用此系列微控制器作为典型的教材! 此系列微控制器采用ARM CORTEX-M处理器内核,关于ARM架构的优势,毋庸置疑是最优秀的架构之一,其CORTEX-A系列微处理器几乎垄断整个移动设备领域!在ARM内核基础上,ST加上自己的数字外围设备,使其具备处理复杂电气问题的能力,例如通过定时器的PWM功能控制电机,通过普通输出端口控制外部继电器,通过片上AD获得外部模拟信号等等,以此系列微控制器为主控的产品不计其数,例如伺服电机
[单片机]
关于STM32系列<font color='red'>微控制器</font>的几点认识
51单片机按键控制舵机
#include reg52.h #define Stop 0 //宏定义,停止 #define Left 1 //宏定义,左转 #define Right 2 //宏定义,右转 sbit ControlPort = P1^0; //舵机信号端口 sbit KeyLeft = P1^1; //左转按键端口 sbit KeyRight = P1^2; //右转按键端口 sbit KeyStop = P1^3; //归位按键端口 unsigned char TimeOutCounter = 0,LeftOrRight = 0; //TimeOutCounter:定时器溢出计数 LeftOrRigh
[单片机]
单片机按键与数码管试验程序 Proteus仿真
最近温习一下单片机,通过proteus 7.8仿真了一下,感觉效果不错。 单片机程序如下: /* 51单片机 按键与数码管实验,用proteus 7.8仿真通过。 通过点按键, K1:数码管数字加一,0~F,加上F后再从0开始。 K2:数码管数字减一,F~0,减到0后再从F开始减 K3:复位这零. */ #include reg52.h //#include stdio.h unsigned char RunMode; unsigned char code SegCode = { 0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xF8, //共阳 0x80,0x90
[单片机]
<font color='red'>单片机</font>按键与数码管试验程序 Proteus仿真
32位单片机PIC32MX270F256B设置UART的两种方法
开发IDE:MPLAB X 5.25 下载/DEBUG工具:MPLAB ICD 3/PICKIT 3 MCU:PIC32MX270F256B 编译器:XC32 V2.30 晶振:外部晶振4M,system pll 倍频到48M作为sys clock 首先是库函数方法配置UART1 #include UART.h void UART1_Init() { //关联引脚 U1MODEbits.STSEL = 0; //1 STOP BIT U1MODEbits.PDSEL = 0; //00 = 8 位数据,无奇偶校验 U1MODEbits.BRGH = 0; //0 = 标准速度模式—— 使能16 倍波特率时钟
[单片机]
Atmel单片机应用技巧
功能强大的时钟中断   在程序设计中,设置一个好的时钟中断,可大大方便和简化程序的编制,提高系统的效率与可操作性。下面以6MHz时钟的89C51系统为例,说明时钟中断的应用。   定时器初值与中断周期。 时钟中断的时间间隔一般取20ms(50Hz),如需要百分之一秒的时基信号,可取10ms(100Hz)。这里取20ms。T0工作于16位定时器方式(方式1),每过一个机器周期T0自动加1,计至0FFFFh的下一个机器周期,T0溢出产生中断,由硬件设置相应的标志位供软件查询。即中断启动后经过N+1个机器周期,T0产生中断。所以,只要先在T0中存入一个比0FFFFh小N的数,然后启动定时器,便会在N+1个机器周期后产生中断,这个数便是
[单片机]
51单片机I/O端口的结构和工作原理
1.概述 单片机的I/O端口是输入信号和输出信号的通道。8051单片机有P0、P1、P2、P3四组I/O 端口,每组端口有8个引脚。 2.P0端口 2.1 概述 P0端口有P0.0~P0.7共8个引脚,这些引脚除了可用作输入引脚和输出引脚外,在外接存储器时,还可用作地址/数据总线引脚。P0端口每个引脚的内部电路结构都相同,其内部电路结构如图1所示。 图1 P0端口的内部电路结构图 2.2 P0端口用作输出端口的工作原理 下面讲解单片机需要从P0.x 引脚输出高电平“1”。如图1所示,单片机内部相关电路通过控制线送出“0(低电平)”到与门的一个输入端和电子开关的控制端,控制线上的“0”一方面使与门
[单片机]
51<font color='red'>单片机</font>I/O端口的结构和工作原理
应用MSP430F149单片机的超低频波形发生器
    摘要: 介绍了应用MSP430F149芯片开发超低频波形发生器的设计原理及其在生理滤波器调试中的应用。     关键词: MSP430F149芯片 单片机 波形发生器 滤波系统 在载人运输系统振动分析仪中常用超低频波形发生器作为仿真的信号源。要求在0.1Hz~100Hz范围内稳定工作,波形失真小,且能以0.1Hz为步长细调。传统超低频波形发生器设计中存在着很多的不足:(1)应用通用电路,元器件多,尤其是电容的体积大,且波形的稳定性差、失真大,调节上极不方便;(2)应用专用电路,如ICL8038、MAX038,其失真和稳定性方面有明显提高,但在超低频应用上仍不合适。而且电路调节器件多,对电源的要求较高,代
[工业控制]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新工业控制文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved