基于AVR和振弦式渗压计的大坝监测系统设计

发布者:liliukan最新更新时间:2011-08-27 来源: EEWORLD关键字:AVR 手机看文章 扫描二维码
随时随地手机看文章

摘要:设计了一种基于AVR和振弦式渗压计的大坝监测系统,简要介绍了振弦式渗压计的原理、数学模型以及ATmega128单片机的特性,运用单片机的输入捕捉和ADC功能并结合软件设计对系统的激振和测频方法进行了改进,同时提出了一种简单易行的防雷击电路。本洲频系统具有硬件电路简单、信号灵敏度高等特点,提高了测量计算准确度,对大坝安全性监测提供了帮助。
关键词:振弦式渗压计;ATmega128;防雷击电路;输入捕捉;ADC

    渗流监测是大坝安全监测中的重要项目之一,为了全面地分析大坝在运行期间的安全性,必须进行渗流量的观测,同时还应观测渗水的温度。由于振弦式渗压计具有分辨率高、不受降雨干扰、无淤堵等优点,所以近年来在大坝渗压监测中得到了广泛的应用。文中提出了以AVR单片机为核心的简单有效的大坝渗压监测系统,并对其中部分模块进行了改进。

1 振弦式渗压计
1.1 振弦式渗压计结构与原理
    本文采用的是VWP型振弦式渗压计,它由透水板、感应膜、密封壳体、振弦及激振电磁圈等组成。仪器中有一个灵敏的不锈钢膜片,在它上面连接振弦,如图1所示。当被测水压作用膜片上时,将引起弹性膜板的变形,其变形带动振弦转变成振弦应力的变化,从而改变振弦的振动频率。使用时,通过对电磁线圈加载适当的电流实现激振过程,激振完成后,切断对线圈的供电,同时将线圈接入测量电路中,通过拾取线圈中的感生电动势来获得振弦的固有频率,频率信号经电缆传输至读数设备,即可测出水荷载的压力值,同时可测出埋设点的温度值。

a.JPG


1.2 振弦式渗压计的数学模型
    对于图1所示的振弦式渗压计,当振弦受张力T作用时,其等效刚度发生变化,振弦的谐振频率f为:
    b.JPG
    式中,p-振弦的线密度(tex,ltex=g/km);l-振弦的有效振动长度(m)。
    本文采用的是单根振弦的渗压计,根据其输出特性,计算公式如下:
    c.JPG
    式中,Pm为渗透压力;k为渗压计的测量灵敏度;fo为基准频率值;f实测频率值;b为温度修正系数;T为实时测量的温度值;T0为温度的基准值;Q为大气压修正系数,对于密封腔与大气压沟通的仪器,Q恒为0。
    假设不考虑大气压力影响,当外界温度恒定时,渗透压力与频率平方差成正比;当渗压增量恒定时,渗透压力与频率平方差成正比,这个输出量仅仅是由温度变化而造成的,与温度增量成线性关系,即d.JPG,于是温度修正系数e.JPG,如果不考虑温度增量的影响,这个输出的变化就是温度变化引起的系统误差。本系统中采用的渗压计k=0.1105,b=0.3042。

2 ATmega128微处理器
    ATmega128作为数据端的控制核心,是基于增强的AVRRISC结构的低功耗8位CMOS微控制器。由于其先进的指令集以及单时钟周期指令执行时间,ATmega128的数据吞吐率高达1 MIPS/MHz,从而可以缓减系统在功耗和处理速度之间的矛盾。该芯片采用5 V供电,其最高工作频率可达16 MHz;4 K字节的SRAM、4 K字节的EZPROM(其寿命可达100 000次写/擦除周期);4个灵活的具有比较模式和PWM功能的定时器/计数器(T/C)。支持外部存储器扩展,为编写和运行程序提供了强力的保证。
    特别的,T/C的输入捕捉单元可用来捕获外部事件,并为其赋予时间标记,以说明此时间的发生时刻。外部事件发生的触发信号由引脚ICPn输入,也可以通过模拟比较器单元来实现。本文采用通过模拟比较器单元触发方式,可以将放大滤波后的模拟信号直接转换为数字信号并被单片机检测。模拟比较器的框图如图2所示。

f.JPG


    其中,ACIC置位后允许通过模拟比较器来触发T/C1的输入捕捉功能。此时比较器的输出被直接连接到输入捕捉的前端逻辑,从而使得比较器可以利用T/C1输入捕捉中断逻辑的噪声抑制器及触发沿选择功能。ACIC为“0”时模拟比较器及输入捕捉功能之间没有任何联系。为了使比较器可以触发T/C1的输入捕捉中断,定时器中断屏蔽寄存器TIMSK的TICIE1必须置位。

    ATmega128有一个10位的逐次逼近型ADC。ADC包括一个采样保持电路,以确保在转换过程中输入到ADC的电压保持恒定。ADC通过逐次逼近的方法将输入的模拟电压转换成一个10位的数字量。最小值代表GND,最大值代表AREF引脚上的电压再减去1LSB。通过写ADMUX寄存器的REFn位可以把AVCC或内部2.56 V的参考电压连接到AREF脚。在AREF上外加电容可以对片内参考电压进行解耦,以提高噪声抑制性能。如果使用单端通道,则绕过增益放大器。因此电路在设计时,将激振输出的信号进行放大并滤除直流信号,进而进行ADC转换。转换结束后(ADIF为高),转换结果被存入ADC结果寄存器(ADCL、ADCH)。单次转换的结果如下:
    g.JPG
    式中,VIN为被选中引脚的输入电压(PF0),VREF为参考电压。0x000代表模拟地电平,0x3FF代表所选参考电压的数值减去1LSB。

3 系统设计与实现
    根据上述基本原理,设计的监测系统的整体框图如图3所示。主要由防雷击电路、激振电路、检测电路、单片机控制电路等几部分组成。工作过程是由单片机产生PWM信号完成对渗压计的激振,线圈中产生的感应电动势经放大滤波电路送给单片机,运用其模拟比较器进行数据捕捉处理,在人工采集数据时直接送显示电路显示。但在远程监控时,可通过Zigbee通信模块进行无线传输,从而完成对数据的采集处理。

h.JPG


3.1 防雷击电路
    雷击是影响大坝安全检测系统正常运行的重要因素之一,因此必须提高检测系统的防雷性能。本文将介绍一个简便易行有效的防雷击电路,如图4所示。

i.JPG


    防雷击电路由玻璃放电管(防雷管)、双向瞬变二极管和热敏电阻组成。当强电流(高于玻璃放电管的放电电压)来时,放电管两端会产生弧光放电,气体电离放电后,两端电压以10-9秒量级的速度迅速降低,从而保护电路。在有可能出现续流的地方,为防止玻璃放电管击穿后长时间导通而损坏,电路中串联热敏电阻。双向TVS(导通电压定位6 V>5 V),在这里起到备用通路的作用。它可在正反两个方向将其工作阻抗立即降至很低的导通值,并将电压钳制到预定水平,从而提高了防雷电路的可靠性。
3.2 激振检测电路
    作为整个系统的主体部分,首先给出总的电路图,如图5所示。

g.JPG


3.2.1 激振电路
    目前,振弦式传感器激励方式主要有高压拨弦和低压扫频激振两种。由于系统运行在低压状态,故采用低压扫频激振。根据传感器的固有频率选择合适的频率段,对传感器施加频率逐渐变大的扫频脉冲串信号,当激振信号的频率和钢弦的固有频率相近时,钢弦能快速达到共振状态,此时产生感应电动势且振幅最大,传感器输出的频率信号信噪比较高且便于测量。
    本系统选用的传感器振弦的固有频率为450~5 000 Hz,故可以充分利用AVR微处理器。运用软件设计,设置ATmega128单片机的引脚PB44输出PWM信号进行激振,激振输出的信号经过光电隔离放大整形电路,进入单片机的ADC接口(PF0),完成对感应电动势的采集。通过程序设计,将最大感应电压信号对应的频率保存在片内存储器中,从而完成对渗压计的激振。对于以后的激振将一直采用此频率,从而确保系统能获得高精度的测量结果,流程图如6所示。

k.JPG


3.2.2 信号调理检测电路
    对传感器进行扫频激励后,传感器将返回幅度不断衰减的正弦信号,由于信号幅度较小,在1 mV左右,因此需要对信号进行放大。本系统选用INA326精密仪表放大器,其适用于单电源、低功耗和精密测量的应用场合,并可保持良好的线性。如图5,INA326的增益它的增益可通过与输入信号隔离的外部增益电阻来设置,而且工作性能稳定。电路中分别由R1、R2、R5、R6设置,增益G1=2R2/R1,G2=2 R6/R5。外接电阻除与增益有关外,也直接影响到稳定性及温度漂移,因此要求精度高时要采用低温度系数的精密电阻。为尽量减少在脚1与脚8的杂散电容量,而且将脚4与脚7直接用电容相连接。

   由于振弦的共振频率范围为450~5 000 Hz,此频率信号的稳定持续时间是有限的,必须在共振信号衰减到不至于影响测频前完成测量任务。ATmega128的两个16位定时/计数器(T/C1、T/C3)具有输入捕捉功能,它是AVR定时/计数器的又一个显著的特点。本文将使用ATmega-128的1个定时/计数器,再配合其输入捕捉功能来测量脉冲的宽度,实现程序流程图7所示。

l.JPG


    在T/C1的捕捉中断中,首先比较PE2(AIN0)和PE3(AIN1)的电压值,得出AC0的实际状态,并清空溢出计数器。当检测器证实ACO为高电平,输入捕捉即被激发,16位的TCNTn数据被复制到输入捕捉寄存器ICRn,同时输入捕捉标志位ICFn被置位。通过读取ICRn寄存器,得到上升沿出现的时间T1;重复上面的过程,记录第二次上升沿出现的时间T2。将两次记录的时间相减,便求得脉冲的周期。如此重复测量多次,求得平均值,从而完成信号的检测。
    可以看到,由于使用定时/计数器以及配合它的捕捉功能测量两次上升沿之间的时间,不仅节省系统的硬件资源,编写程序简单,而且精度也高。
3.3 通道选择电路
    本系统所使用的传感器为白、绿、红、黑四线接头,其中白线与绿线代表所测热敏电阻接线端,红线与黑线代表振弦的两端。通过八通道模拟开关HCF4051以及单片机控制,通道选择模块把8路传感器分时测量。由单片机的引脚发出控制信号选通渗压计,然后进行激振并输出频率信号,最后以总线的形式接入到单片机测量电路。
3.4 测温电路
    在振弦传感器激振线圈旁设置有能测量温度的热敏电阻,这样就能测出温度对振弦频率的影响,从而对测量误差提出修正。
    在通常情况下,其温度与电阻的关系在一定温度范围内可表示为:
    m.jpg
    式中,T为温度,℃;g(R)为电阻R的函数关系式。所以,要测出温度,只要测量出温度传感器等效电阻即可。

4 结束语
    本测频系统具有简单有效的防雷击电路,以及简便的系统电路,使得整个系统的稳定性得到很大的提高。同时充分利用AVR单片机的强大特性,使得信号采集和检测的精度得到提高,为测量结果的后期处理与大坝安全监测带来了极大的便利。

关键字:AVR 引用地址:基于AVR和振弦式渗压计的大坝监测系统设计

上一篇:基于AVR单片机与FPGA的低频数字式相位测量仪
下一篇:基于单片机的静电探针自动测量系统

推荐阅读最新更新时间:2024-03-30 21:48

AVR 定时器中断程序
基于7.3728M晶振作AVR定时器的时钟源进行1S定时! 实验内容: 使用AVR的定时器T1做1S定时,并使用PD口的LED指示灯做简单指示。 #include iom16v.h #include macros.h #define DISP_DDR DDRD #define DISP_PORT PORTD /*-------------------------------------------------------- 程序名称:定时器1初始化程序 --------------------------------------------------------*/ void timer1_init(void) {
[单片机]
AVR单片机定时计数器学习笔记分享
  定时计数器的结构与应用定时计数器(Timer/Counter)常用于计数、延时、测量 周期、频率、脉宽、提供定时脉冲信号等。在实际应用中,对于转速,位移、速度、流量等物理量的 测量,通常也是由传感器转换成脉冲电信号,通过使用定时计 数器来测量其周期或频率,再经过计算处理获得。   AVR的定时计数器接口功能: 通过定时计数器与比较匹配寄存器相互配合,生成占空比 可变的方波信号,即脉冲宽度调制输出PWM信号,可用于 D/A、马达无级调速控制、变频控制等。本文主要介绍的是AVR单片机定时/计数器学习笔记,具体的跟随小编来了解下。      AVR单片机定时/计数器学习笔记   定时/计数器1(16位)有普通模式、CTC模式、
[单片机]
<font color='red'>AVR</font>单片机定时计数器学习笔记分享
AVR单片机的RC5和RC6算法区别、实现与优化
引言   在无线局域网中,传输的介质主要是无线电波和红外线,任何具有接收能力的窍听者都有可能拦截无线信道中的数据,掌握传输的内容,造成数据泄密。因此,对于无线局域网来说,数据的加密是关键技术之一。   AVR高速嵌入式单片机是8位RISC MCU,执行大多数指令只需一个时钟周期,速度快(8MHz AVR的运行速度约等于200MHz C51的运行速度);32个通用寄存器直接与ALU相连,消除和运算瓶颈。内嵌可串行下载或自我编程的Flash和EPPROM,功能繁多,具有多种运行 模式。   依照IEEE1999年发布的802.11无线局域网协议标准,采用Atmel公司的Atmega128高速嵌入式单片机,开发无线数据传输装 置。
[单片机]
AVR单片机为核心的全自动太阳能工程热水器控制器设计
引 言 随着人们生活水平的提高, 各种热水器的使用已相当普及, 与之相配套的控制仪也相继问世。然而, 目前市场上的各种热水器控制电路还与理想要求相差甚远。消费者需要真正的全自动 控制, 以实现使用的最简单化, 就像家用电视机、电冰箱一样, 接通电源、设定完毕就不用再操心了。鉴于国内太阳能热水器市场不断扩大, 而与其相配套的控制器却急需改进的情况, 研制了这套太阳能热水器控制器。本文设计的太阳能热水器是以AVR Meg a 32 单片机为检测控制核心,不仅实现了温度、水位两种参数的实时显示功能, 而且具有温度设定与控制功能。控制器可以根据天气情况利用辅助加热装置使蓄水箱内的水温达到预先设定的温度, 从而达到24 小时供应热水的目的。
[单片机]
以<font color='red'>AVR</font>单片机为核心的全自动太阳能工程热水器控制器设计
基于AVR单片机的实验加载闭环控制系统
分离式液压千斤顶在生产建设、科学实验等各类工程结构加载工作中具有广泛的用途。 该设备一般由电动高压油泵+压(拉)千斤顶组成,本文论及的加载系统规格如表1所示。 油泵电机直接带动泵轴旋转,柱塞作往复运动,进油阀/排油阀工作,液压油通过高压油管进入千斤顶。用户可通过泵站上的手柄,人工转动泵内卸荷阀处于不同位置,实现系统的加载/卸载、推力/拉力及加载速率和稳压作业。 在对力和位移数值或稳压时间等精度要求较高的科研实验加载场合,显然这种仅靠手工操作的方式难以胜任。给该设备增设电脑测控系统就成为一项与时俱进的技术革新,也是提高此类设备性价比的最佳方案。 1 下位机 由ATmega128构成下位机控制核心(见图1),其
[单片机]
基于<font color='red'>AVR</font>单片机的实验加载闭环控制系统
AVR Studio 的使用注意
AVR单片机最常用的集成开发环境就是AVR Studio和ICCAVR了,AVR Studio是ATMEL公司自己开发的编译环境,但是只支持汇编语言的开发。现在的版本已经出到AVR Studio5.0 ,但是好像要100M左右,很多研发的都是在使用AVR Studio4.0版本的吧。相对于C语言来说,就要安装winAVR和AVR Studio共同组成C语言编译环境了。AVR Studio头文件有自己的延迟函数。#include uitl/delay.h 有毫秒_delay_ms()和微妙_delay_us()两个子函数,可以在其他函数中调用这两个函数,但是使用这两个函数的时候特别要注意在AVR Studio中设置编译对象的晶振和优
[单片机]
AVR单片机的RTOS-AVRX应用
引 言   随着技术的发展,嵌入式系统的设计及应用对人们的生活产生了很大的影响,并将逐渐改变人们未来的生活方式。在特定的操作系统上开发应用程序,可以使开发人员忽略掉很多底层硬件细节,使得应用程序调试更方便、易于维护、开发周期缩短并且降低开发成本,因而嵌入式操作系统深得开发人员的青睐。   AVR微处理器是Atmel公司开发的8位嵌入式RISC处理器,它具有高性能、高保密性、低功耗、非易失性等优点,而且程序存储器和数据存储器可独立编址,并具有独立访问的哈佛结构。AVR单片机内核有丰富的指令集,通过32个通用寄存器直接与逻辑运算单元相连接,允许在一个周期内一条单一指令访问两个独立的寄存器,这样的结构使代码的执行效率比传统的复杂指令集
[应用]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新工业控制文章
换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved