正交幅度调制解调器的FPGA设计与仿真

发布者:幸福微风最新更新时间:2011-12-26 来源: 电子产品世界关键字:FPGA 手机看文章 扫描二维码
随时随地手机看文章

   摘要:正交幅度调制技术(QAM)是一种功率和带宽相对高效的信道调制技术,因此在信道调制技术中得到了广泛的应用。它的载波信号的FPGA实现一般采用查找表的方法,为了达到高精度要求,需要耗费大量的ROM资源。提出了一种基于流水线CORDIC算法的实现方案,可有效地节省FPGA的硬件资源,提高运算速度,并根据DSP开发工具DSP Builder的优点,采用VHDL文本与Simulink模型图相结合的方法进行了设计。仿真结果验证了设计的正确性及可行性。
关键词:正交幅度调制;调制解调器;CORDIC算法;FPGA;DSP Builder

0 引言
    正交幅度调制是频率利用率很高的一种调制技术。与其他调制技术相比,具有能充分利用带宽、抗噪声能力强等优点,在移动通信、有线电视传输和ADSL中均有广泛应用。它的载波信号的FPGA实现一般采用DDS(直接数字频率合成)技术,即在两块ROM查找表中分别放置一对正交信号。通过这种方法虽然可以输出一组完全正交的载波信号,但它主要用于精度要求不是很高的场合,如果精度要求高,查找表就很大,相应的存储器容量也要很大,使系统的运行速度受到限制,不适合现代通信系统的发展。本文基于CORDIC(Coordinate Rotation Digital Computer)算法,研究正交幅度调制解调器的FPGA实现方法。该方法不仅能够节省大量的FPGA逻辑资源,而且能很好地兼顾速度、精度、简单及高效等各个方面。

1 正交幅度调制解调器工作原理
    正交幅度调制解调器系统框图如图1所示。其中,a(t)和b(t)为两路相互独立的待传送基带信号,正交信号发生器输出两路互为正交的正弦载波信号,经过两个乘法器可以获得互为正交的平衡调幅波,即不带载频的双边带调幅波。假设乘法器的乘法系数为1,则经过加法器产生的调制信号为:
    a.jpg

b.jpg


    对调制信号X(t)进行解调,采用了正交同步解调方法。已调正交调幅信号X(t)分别与正交信号发生器产生的余弦信号和正弦信号相乘后产生两路输出信号:
    c.jpg

2 正交信号发生器的设计
2.1 CORDIC算法原理
    CORDIC算法是由J.Volder于1959年提出的。该算法适用于解决一些三角学的问题,如平面坐标的旋转和直角坐标到极坐标的转换等。  CORDIC算法的基本思想是通过一系列固定的、与运算基数有关的角度的不断偏摆,以逼近所需的旋转角度。从广义上讲,CORDIC方法就是一种数值计算的逼近方法。该算法实现三角函数的基本原理如下:
    设初始向量(x0,y0)逆时针旋转角度口后得到向量(xn,yn),则:
d.jpg

    式中:θi表示第i次旋转的角度,并且tanθi=2-i;zi表示第i次旋转后与目标角度的差;δi表示向量的旋转方向由zi的符号位来决定,即δi=sign(zi);e.jpg为每一级的校正因子,也就是每一级旋转时向量模长发生的变化,对于字长一定的运算,总的校正因子是一个常数。迭代n次(n→∞)后可以得到如下结果:
    f.jpg
    当给定的初始输入数据为x0=1/k,y0=0时,z0=θ,则输出为:
    g.jpg
    由上可知,xn,yn分别为输入角θ的余弦和正弦值,故基于CORDIC算法可产生正交信号。
2.2 CORDIC算法流水线结构
    由式(5)可以看出,CORDIC算法的实现只需要基本的加减法和移位操作,因此很容易用硬件实现。该硬件的实现可以通过图2所示的基本单元级联成流水线结构实现。在经过n(迭代次数)个时钟的建立时间之后,每隔一个时钟便能输出一个运算结果。输出精度由CORDIC算法中的迭代次数决定。如需提高精度,只需简单地增加流水单元即可,扩展性很好,而且这并不会大量增加FPGA的资源耗费。

h.jpg

3 FIR低通滤波器设计
    FIR低通滤波器设计可以采用分布式算法,利用FPGA查找表代替乘法器来实现。为便于理解分布式算法的原理,考虑“乘积和”内积如下:
i.jpg
    式(10)的形式被称为分布式算法,分布式算法是一种以实现乘累加运算为目的的运算方法。如果建立一个查找表,表中数据由所有固定系数的所有加的组合构成,那么用N位输人数据构成的N位地址去寻址查找表。如果N位都为1,则查找表的输出为N位系数之和;如果N位中有0,则其对应的系数将从和中去掉。这样乘法运算就成了查找操作,整数乘法可以通过左移b位实现。滤波器的系数h(n)可以使用Matlab的FDATool设计工具来获得。

4 调制解调器的FPGA设计
    DSP Builder是美国Altera公司推出的一个面向DSP开发的系统级工具,作为Matlab的一个Simulink工具箱,可以帮助设计者完成基于FPGA的DSP系统设计的整个流程。更为重要的是基于Simulink平台利用DSP Builder库进行FPGA设计时,能利用DSP Builder库的HDL Import模块将HDL文本设计转变成为DSP Builder元件,在系统的模型设计中使用,为系统的FPGA设计提供很大的方便。因此,调制解调器的设计采用VHDL文本与Simulink模型图设计相结合的方法。
4.1 子模块的VHDL设计
    CORDIC算法和FIR低通滤波器两个子模块可以在QuartusⅡ环境中采用VHDL代码进行设计,也可以基于Simulink平台利用DSP Builder库进行模型图设计。但是用模型图设计时,设计图会显得非常复杂、庞大,不利于阅读和排错,而VHDL代码直接描述会比Simulink模型图描述更为简便。故以上两个模块均在QuartusⅡ环境中,采用VHDL代码进行设计描述及编译。
4.2 系统模型建立
    图3为基于Simulink平台建立的调制解调器系统模型图。首先利用Altera DSP Builder库的HDL Import模块将设计的CORDIC算法及低通滤波器子模块对应的文本文件导入,将文本设计转变成为DSP Builder元件模块,然后按图3调用DSP Builder和Simulink库中的其他图形模块建立系统模型图,并设置相应模块参数。

j.jpg


4.3 系统仿真验证与实现
    完成模型设计之后,可以基于Simulink平台对模型进行系统仿真,即通过Simulink中的示波器Scope查看仿真结果(见图4)。仿真结果表明,设计电路实现了调制解调功能。然后双击SignalCompiler模块,将模型设计转换成可综合的RTL级VHDL代码,并对其进行综合、配置下载。

5 结语
    本文采用了一种基于流水线CORDIC算法设计正交幅度调制解调器的方法,能有效节省硬件资源,提高运算精度和速度。由于采用了FPGA来设计,可适应软件无线电的要求,设计稍作修改即可适应更多的调制方式。


 

关键字:FPGA 引用地址:正交幅度调制解调器的FPGA设计与仿真

上一篇:基于FPGA的人脸检测系统设计
下一篇:基于Nios II的多媒体广告系统原理设计

推荐阅读最新更新时间:2024-03-30 21:52

基于FPGA的数字量变换器测试系统设计
  针对数字量变换器性能参数的测试工作,以FPGA为控制核心,开展数字量变换器测试系统的设计和研究,并给出系统各模块的具体设计方法;系统通过USB实现与计算机的通信,能够产生计算机字信号及相应移位脉冲信号、勤务信号和128路指令信号,并能接收经过数字量变换器变化后的计算机数码和指令数码信号;测试系统能够完成对数字量变换器各项性能指标的测试,实验表明,测试系统精度及可靠性高、实时性好,已经成功应用于某遥测系统中。   0 引言   在飞行器发射试验中,常用遥测系统获取其内部各系统的工作状态参数和环境数据,为评定飞行器的性能及故障分析提供依据。数字量变换器作为遥测系统弹上的重要设备,它的主要功能是控制接收弹上的各种飞行参数。变换器性能
[测试测量]
基于<font color='red'>FPGA</font>的数字量变换器测试系统设计
nRF24L01无线模块在单片机与FPGA上的应用
  先简单的介绍下nRF24L01无线模块   (1) 2.4Ghz 全球开放ISM 频段免许可证使用   (2) 最高工作速率2Mbps,高效GFSK调制,抗干扰能力强,特别适合工业控制场合   (3) 126 频道,满足多点通信和跳频通信需要   (4) 内置硬件CRC 检错和点对多点通信地址控制   (5) 低功耗1.9 - 3.6V 工作,待机模式下状态为22uA;掉电模式下为900nA   (6) 内置2.4Ghz 天线,体积小巧15mm X29mm   (7) 模块可软件设地址,只有收到本机地址时才会输出数据(提供中断指示),可直接接各种单片机使用,软件编程非常方便   通过SPI方式完成数据的交换,包括数
[单片机]
nRF24L01无线模块在单片机与<font color='red'>FPGA</font>上的应用
CDMA 2000系统中前向链路卷积编码器的FPGA实现
在通信系统中,由于数字信号在传输过程中受到各种干扰的影响,使信号码元波形变坏,故传输到接收端后可能发生错误判决,为解决这一问题,通常在设计数字通信系统时,首先应从合理地选择调制制度、解调方法以及发送功率等方面考虑,若采取以上措施仍难满足要求,就要考虑差错控制措施。在CDMA 2000系统的前向链路和反向链路中就采用了卷积编码来实现前向差错控制(FEC)。   FPGA是可编程逻辑器件,它的主要优点在于可以借助EDA工具通过软件编程对器件的硬件结构和工作方式进行重构,这就使得硬件设计具有软件设计的灵活性和便捷性。本设计采用VHDL语言并选用可编程逻辑器件在QuartusⅡ下来实现CDMA 2000系统中的前向链路卷积编码器。  
[嵌入式]
CDMA 2000系统中前向链路卷积编码器的<font color='red'>FPGA</font>实现
AD977A在脑电信号采集系统中的应用
   前言   脑电信号EEG(Electroencephalography)是由脑神经活动产生并存在于中枢神经系统的自发性电位活动,含有丰富的大脑活动信息。它是大脑研究、生理研究和临床脑疾病诊断的重要手段。记录脑电信号,可为临床诊断提供依据。因此,提取脑电信号具有重要的现实意义。由于脑电信号处理一般都是基于数字技术,因此电极采集到的模拟信号经信号调理后,通过A/D转换器转换成数字信号是必不可少的过程。这里提出一种基于FPGA和AD977A的脑电信号数据采集系统,采用FPGA作为信号处理器,并控制模数转换,从而实现高可靠性,高通用性的脑电信号数据采集系统。    2 系统总体设计   通过对人体进行视觉刺激、听觉刺激或神经刺
[模拟电子]
基于MicroBlaze软核的FPGA片上系统设计
摘要: 分析软处理器 MicroBlaze 的体系结构,给出 MicroBlaze 内核在软件无线电系统中的应用,实现 SOPC (可编程系统芯片)。 关键词: FPGA IP Core SOPC MicroBlaze CoreConnect 软处理器 软件无线电 Xilinx 公司的 MicroBlaze 32 位软处理器核是支持 CoreConnect 总线的标准外设集合。 MicroBlaze 处理器运行在 150MHz 时钟下,可提供 125 D-MIPS 的性能,非常适合设计针对网络、电信、数据通信和消费市场的复杂嵌入式系统。
[嵌入式]
基于FPGA的双口RAM与PCI9O52接口设计
  O 引言   IDT70V28L(双口RAM)的存取时间大于20ns,PCI9052工作于25MHz,其存取时间要大于双口RAM的存取时间。PCI9052是发起交易的主动者,相当于一个慢速器件访问快速器件,通过可编程器件,可以把PCI9052读写控制信号直接传递给IDT70V28L,完成时序的匹配。   为将PCI9052的局部逻辑转换为双口RAM的读写控制信号和地址信号,本设计采用了可编程器件来实现它们之间的接口逻辑电路。在可编程器件设计中,状态机的设计方法是应用最广泛的设计方法之一。有限状态机是一种简单、结构清晰、设计灵活的方法,它易于建立、理解和维护,特别应用在具有大量状态转移和复杂时序控制的系统中,更显其优势。
[嵌入式]
基于89C55和FPGA的最小系统频率特性测试仪
  频率特性是一个系统(或元件)对不同频率输入信号的响应特性,是一个网络最重要的特性之一。幅频特性和相频特性综合称为频率特性。测量频率的方法有点频法和扫频法。传统的模拟式扫频仪价格昂贵、体积庞大,不能直接得到相频特性,给使用带来诸多不便。为此,设计了数字扫频式 频率特性测试仪 。   1 方案论证与选择   1.1 方案的选择   1.1.1 信号发生模块   方案1:采用模拟分立元件或单片压控函数发生器。可同时产生正弦波、方波、三角波,但由于元件分散性太大,产生的频率稳定度较差、精度低、波形差,不能实现任意波形输出。   方案2:采用传统的直接频率合成器。这种方法能实现快速频率变换,具有低相位噪声以及所有方法中最高的工作频
[单片机]
基于89C55和<font color='red'>FPGA</font>的最小系统频率特性测试仪
基于FPGA的FIR数字滤波器设计方案(一)
在Matlab/Simulink环境下,采用DSP Builder模块搭建FIR模型,根据FDATool工具对FIR滤波器进行了设计,然后进行系统级仿真和ModelSim功能仿真,其仿真结果表明其数字滤波器的滤波效果良好。通过SignalCompiler把模型转换成VHDL语言加入到FPGA的硬件设计中,从QuartusⅡ软件中的虚拟逻辑分析工具SignalTapⅡ中得到数字滤波器实时的结果波形图,结果符合预期。   0 引言   在信息信号处理过程中,数字滤波器是信号处理中使用最广泛的一种方法。通过滤波运算,将一组输入数据序列转变为另一组输出数据序列,从而实现时域或频域中信号属性的改变。常用的数字滤波器可分为有限脉冲响应(F
[模拟电子]
基于<font color='red'>FPGA</font>的FIR数字滤波器设计方案(一)
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新工业控制文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved