基于FPGA的多通道SSI通信控制器设计

发布者:幸福微风最新更新时间:2011-12-26 来源: 电子产品世界关键字:FPGA 手机看文章 扫描二维码
随时随地手机看文章

   采用VHDL硬件描述语言,以Xilinx公司的FPGA为设计平台,设计实现了以开源软核MC8051为核心的控制单元,控制4路SSI协议模块的SoPC架构的通信控制器,并对通信控制器进行了功能仿真与验证。该控制器可灵活进行IP核模块扩展,并可作为外围处理机与TI公司TMS320C6000系列DSP进行互连通信,将慢速串行通信任务进行分离,从而减轻DSP的负担,提高系统的整体性能。

在嵌入式系统应用领域中,需要完成的任务越来越复杂,应用环境也越来越恶劣,要求嵌入式计算机在体积不断减小的情况下,具有更强的处理功能和较低的功耗。本文采用FPGA[1]设计技术,利用VHDL硬件描述语言[2],将4个同步串行接口协议SSI IP核[3]模块组成一个功能可扩展的SoPC架构的从通信控制器,从而使主从控制器协同工作,保证了整个嵌入式系统在通信速度达到技术要求的前提下,能更有效地降低系统功耗与体积。

1 SoPC设计方法

可编程片上系统SoPC(System on Programmable Chip)(或称基于大规模FPGA的单片系统)是一种灵活、高效的SoC解决方案,将处理器、存储器、I/O口等系统需要的功能模块集成到一个PLD器件上,构成了一个可编程片上系统,具有灵活的设计方式(可裁减、可扩充、可升级),并具备软硬件在系统可编程功能。

图1为典型的基于IP核库的SoPC设计流程,主要是利用软硬件协同方法完成整个系统设计。

11.jpg

2 通信控制器架构模块组成

本文采用了一种全新的SoPC体系结构,整个嵌入式系统主要由主控制器和FPGA(从控制器)两大功能单元组成,其结构如图2所示。主控制器选用TI公司的TMS320C6713 DSP,虚框内的电路单元则为所设计的多通道同步通信控制器(也即从控制器)。通过TMS320C6713处理器芯片自带的EMIF模块与基于FPGA实现的多通道同步通信控制器进行数据交换。基于FPGA实现的从处理器内部选用MC8051 IP软核来控制和管理4路SSI协议通信控制器,TMS320C6713与MC8051之间通过双端口RAM共享数据和交换信息,整个系统采用中断控制方式,实现主/从控制器协同处理任务。

12.jpg

由图2可知,该SoPC架构控制器内部可划分为4大模块:从处理器MC8051 IP核、4路SSI协议通信控制器、双端口RAM和中断逻辑单元。下面分别对4个主要组成模块进行介绍。

2.1 从处理器

为了提高同步通信控制器的自主性与灵活性,在FPGA内部嵌入一个微控制器80C51 IP核作为同步通信控制器的核心控制单元。MC8051 IP软核的特点主要有:指令集与工业标准的8051控制器兼容;新的体系结构使单片机处理速度提高了10倍;无多路复用I/O端口,实行输入和输出接口完全隔离;256 B的内部RAM;最高可达64 KB的内部ROM和最高可达64 KB的外部RAM;容易调整或改变VHDL源代码实现相关的核扩展功能;可通过VHDL常量进行参数化设置。

图3是MC8051 IP核的内部功能结构图。从图中可以看到,该IP核包括的子模块有:算术逻辑单元MC8051_ALU、串行接口单元MC8051_SIU、定时器/计数器单元MC8051_TMRCTR、核心控制单元MC8051_CONTROL、内部数据存储单元MC8051_RAM、内部程序存储单元MC8051_ROM和外部数据存储单元MC8051_RAMX。其中,N表示MC8051_SIU和MC8051_TMRCTR两个单元根据实际需要可灵活制定的个数,其范围值为1~256,可在VHDL代码中改变参数C_IMPL_N_TMR的值进行设置。

13.jpg13.jpg

2.2 SSI协议控制器


同步串行接口SSI(Synchronous Serial Interface)[4]通信协议是同步串行通信协议的一种类型,该协议主要包含帧同步信号GATE、时钟信号CLK和串行数据DATA三类信号,其时序关系如图4所示。

14.jpg

在图4中,帧同步信号GATE有方式1和方式2两种可选择方式协调控制时钟信号CLK和串行数据DATA。方式1用虚曲线①表示,在该方式下,整个系统空闲时,GATE一直处于高电平状态,当触发一个瞬态低电平脉冲后,DATA在GATE信号的上升沿根据系统配置要求进行传输,同时GATE保持高电平。方式2用实曲线②表示,该方式下当系统空闲时,GATE一直处于低电平状态,当触发一个瞬态高电平脉冲后,DATA在GATE信号的下降沿进行传输,同时GATE保持低电平。在上述两种方式中,DATA可在CLK的上升沿或者下降沿保持稳定并进行采集。

SSI IP核接口信号图如图5所示。

15.jpg

本文中共定义了4路(A~D)相同结构的SSI IP核,MC8051通过中断和查询方式对4路通信协议控制器进行数据的收/发操作控制。

2.3 双端口RAM

MC8051中的外部数据存储器MC8051_XRAM存储空间最高可达到64 KB,本设计用VHDL语言生成一个32 KB的外部数据扩展双端口存储器MC8051_XRAM,一端供MC8051 IP核操作,另一端供DSP操作,通过地址线译码,从而为MC8051_XRAM和4路SSI协议控制器提供cs_x和cs_a~cs_d等片选信号。输入MC8051_XRAM模块的地址线为addra(15:0),实际使用到的地址线空间为addra(14:0),支持32 KB寻址空间。

2.4 中断逻辑单元

中断逻辑单元的操作地址为FFD3H,当DSP向该地址进行写操作时,中断逻辑单元将向多通道同步通信控制器发出低有效的中断信号;当多通道同步通信控制器中的MC8051向该地址进行写操作时,中断逻辑单元将清除中断。该中断逻辑单元的信号接口信息如表1所示。

15.jpg

选中A路通道对并行数据的发送进行仿真测试,其测试仿真如图7所示。从图可以看出,并行数据Data在MC8051工作时钟Wr_clk和外部分频时钟Exclk作用下,通过设置A通道内的寄存器组合达到最终串行数据的发送。从而可以验证,数据发送仿真功能正确。

17.jpg

选中B路通道对外围串行数据的接收进行仿真测试,其测试仿真如图8所示。从图可以看出,串行数据Rxd在MC8051工作时钟Clk和外部分频时钟Exclk作用下,通过配置B通道内的寄存器组合得到并行数据的接收。从而可以验证,数据接收仿真功能正确。

本文以Xilinx公司的FPGA器件为设计平台,采用VHDL硬件描述语言,设计了一种SoPC架构的从通信控制器,并对设计方案进行了仿真与验证,得出了设计方案的正确性,并已成功用于某遥测数据工程实践中,因其兼具较高的数据传输率、IP核的可移植性和灵活扩展性而容易推广使用。

关键字:FPGA 引用地址:基于FPGA的多通道SSI通信控制器设计

上一篇:基于FPGA的光电抗干扰电路设计方案
下一篇:基于数字锁相环的晶振频率同步模块设计

推荐阅读最新更新时间:2024-03-30 21:52

基于FPGA的数字量变换器测试系统设计
  针对数字量变换器性能参数的测试工作,以FPGA为控制核心,开展数字量变换器测试系统的设计和研究,并给出系统各模块的具体设计方法;系统通过USB实现与计算机的通信,能够产生计算机字信号及相应移位脉冲信号、勤务信号和128路指令信号,并能接收经过数字量变换器变化后的计算机数码和指令数码信号;测试系统能够完成对数字量变换器各项性能指标的测试,实验表明,测试系统精度及可靠性高、实时性好,已经成功应用于某遥测系统中。   0 引言   在飞行器发射试验中,常用遥测系统获取其内部各系统的工作状态参数和环境数据,为评定飞行器的性能及故障分析提供依据。数字量变换器作为遥测系统弹上的重要设备,它的主要功能是控制接收弹上的各种飞行参数。变换器性能
[测试测量]
基于<font color='red'>FPGA</font>的数字量变换器测试系统设计
nRF24L01无线模块在单片机与FPGA上的应用
  先简单的介绍下nRF24L01无线模块   (1) 2.4Ghz 全球开放ISM 频段免许可证使用   (2) 最高工作速率2Mbps,高效GFSK调制,抗干扰能力强,特别适合工业控制场合   (3) 126 频道,满足多点通信和跳频通信需要   (4) 内置硬件CRC 检错和点对多点通信地址控制   (5) 低功耗1.9 - 3.6V 工作,待机模式下状态为22uA;掉电模式下为900nA   (6) 内置2.4Ghz 天线,体积小巧15mm X29mm   (7) 模块可软件设地址,只有收到本机地址时才会输出数据(提供中断指示),可直接接各种单片机使用,软件编程非常方便   通过SPI方式完成数据的交换,包括数
[单片机]
nRF24L01无线模块在单片机与<font color='red'>FPGA</font>上的应用
CDMA 2000系统中前向链路卷积编码器的FPGA实现
在通信系统中,由于数字信号在传输过程中受到各种干扰的影响,使信号码元波形变坏,故传输到接收端后可能发生错误判决,为解决这一问题,通常在设计数字通信系统时,首先应从合理地选择调制制度、解调方法以及发送功率等方面考虑,若采取以上措施仍难满足要求,就要考虑差错控制措施。在CDMA 2000系统的前向链路和反向链路中就采用了卷积编码来实现前向差错控制(FEC)。   FPGA是可编程逻辑器件,它的主要优点在于可以借助EDA工具通过软件编程对器件的硬件结构和工作方式进行重构,这就使得硬件设计具有软件设计的灵活性和便捷性。本设计采用VHDL语言并选用可编程逻辑器件在QuartusⅡ下来实现CDMA 2000系统中的前向链路卷积编码器。  
[嵌入式]
CDMA 2000系统中前向链路卷积编码器的<font color='red'>FPGA</font>实现
AD977A在脑电信号采集系统中的应用
   前言   脑电信号EEG(Electroencephalography)是由脑神经活动产生并存在于中枢神经系统的自发性电位活动,含有丰富的大脑活动信息。它是大脑研究、生理研究和临床脑疾病诊断的重要手段。记录脑电信号,可为临床诊断提供依据。因此,提取脑电信号具有重要的现实意义。由于脑电信号处理一般都是基于数字技术,因此电极采集到的模拟信号经信号调理后,通过A/D转换器转换成数字信号是必不可少的过程。这里提出一种基于FPGA和AD977A的脑电信号数据采集系统,采用FPGA作为信号处理器,并控制模数转换,从而实现高可靠性,高通用性的脑电信号数据采集系统。    2 系统总体设计   通过对人体进行视觉刺激、听觉刺激或神经刺
[模拟电子]
基于MicroBlaze软核的FPGA片上系统设计
摘要: 分析软处理器 MicroBlaze 的体系结构,给出 MicroBlaze 内核在软件无线电系统中的应用,实现 SOPC (可编程系统芯片)。 关键词: FPGA IP Core SOPC MicroBlaze CoreConnect 软处理器 软件无线电 Xilinx 公司的 MicroBlaze 32 位软处理器核是支持 CoreConnect 总线的标准外设集合。 MicroBlaze 处理器运行在 150MHz 时钟下,可提供 125 D-MIPS 的性能,非常适合设计针对网络、电信、数据通信和消费市场的复杂嵌入式系统。
[嵌入式]
基于FPGA的双口RAM与PCI9O52接口设计
  O 引言   IDT70V28L(双口RAM)的存取时间大于20ns,PCI9052工作于25MHz,其存取时间要大于双口RAM的存取时间。PCI9052是发起交易的主动者,相当于一个慢速器件访问快速器件,通过可编程器件,可以把PCI9052读写控制信号直接传递给IDT70V28L,完成时序的匹配。   为将PCI9052的局部逻辑转换为双口RAM的读写控制信号和地址信号,本设计采用了可编程器件来实现它们之间的接口逻辑电路。在可编程器件设计中,状态机的设计方法是应用最广泛的设计方法之一。有限状态机是一种简单、结构清晰、设计灵活的方法,它易于建立、理解和维护,特别应用在具有大量状态转移和复杂时序控制的系统中,更显其优势。
[嵌入式]
基于89C55和FPGA的最小系统频率特性测试仪
  频率特性是一个系统(或元件)对不同频率输入信号的响应特性,是一个网络最重要的特性之一。幅频特性和相频特性综合称为频率特性。测量频率的方法有点频法和扫频法。传统的模拟式扫频仪价格昂贵、体积庞大,不能直接得到相频特性,给使用带来诸多不便。为此,设计了数字扫频式 频率特性测试仪 。   1 方案论证与选择   1.1 方案的选择   1.1.1 信号发生模块   方案1:采用模拟分立元件或单片压控函数发生器。可同时产生正弦波、方波、三角波,但由于元件分散性太大,产生的频率稳定度较差、精度低、波形差,不能实现任意波形输出。   方案2:采用传统的直接频率合成器。这种方法能实现快速频率变换,具有低相位噪声以及所有方法中最高的工作频
[单片机]
基于89C55和<font color='red'>FPGA</font>的最小系统频率特性测试仪
基于FPGA的FIR数字滤波器设计方案(一)
在Matlab/Simulink环境下,采用DSP Builder模块搭建FIR模型,根据FDATool工具对FIR滤波器进行了设计,然后进行系统级仿真和ModelSim功能仿真,其仿真结果表明其数字滤波器的滤波效果良好。通过SignalCompiler把模型转换成VHDL语言加入到FPGA的硬件设计中,从QuartusⅡ软件中的虚拟逻辑分析工具SignalTapⅡ中得到数字滤波器实时的结果波形图,结果符合预期。   0 引言   在信息信号处理过程中,数字滤波器是信号处理中使用最广泛的一种方法。通过滤波运算,将一组输入数据序列转变为另一组输出数据序列,从而实现时域或频域中信号属性的改变。常用的数字滤波器可分为有限脉冲响应(F
[模拟电子]
基于<font color='red'>FPGA</font>的FIR数字滤波器设计方案(一)
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新工业控制文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved