ATM出钞模块的控制系统设计

发布者:EuphoricMelody最新更新时间:2006-08-11 来源: 电子设计应用关键字:模块  钞票  命令  主机 手机看文章 扫描二维码
随时随地手机看文章

前言

ATM机的核心部件是出钞模块,它是集电子、机械于一体的自动化装置,到现在为止,只有几个发达国家可以研发和制造,但随着我国机械制造和自动控制技术的提高,完全有能力研制出适合中国国情的ATM出钞模块。
  
ATM出钞模块的结构

ATM出钞模块一般由上、下两层功能模块组成:上层为验钞、送钞及废钞回收模块;下层为钞箱及挖钞模块(由1~4个结构相同的挖钞单元组成),其结构示意图如图1所示。
验钞及送钞模块的作用是对由供钞模块挖出的每张钞票进行高度、厚度以及倾斜度进行检测,通过控制分拣器把不合格的钞票送进废钞箱,而合格的钞票则送到叠钞器,最后由送钞机械手把整叠的钞票送到出钞口,完成一次出钞操作。如客户超时不取款,则把钞票收回并放到回钞箱里。

挖钞模块的作用是放置钞箱并根据指令把钞票从钞箱中一张一张地挖出来,挖钞方式有两种:真空吸钞和摩擦出钞。这两种方式各有千秋,真空吸钞精确可靠,容易维护,但出钞速度较慢(1~2张/秒),目前只有NCR公司使用。而摩擦出钞技术的优点是出钞速度快(5~7张/秒),为绝大部分ATM厂商所采用。


图1 ATM出钞模块结构示意图

ATM出钞模块控制系统的硬件设计

整个控制系统的主要功能就是通过各种电子电路驱动电磁阀、单、双向电机和步进电机,以实现对整个出钞模块的所有机械部件的动作,并对各种开关量输入(如光电感应器、微动开关、高低电平等)和各种物理参数测量电路的直流电压信号(如单张、整叠钞票厚度)做实时、连续的检测,根据检测结果及时调整机械部件的动作,保障顾客在取钞过程中的正确、安全稳定运行。同时,在运行过程中出现故障时能够记录故障状态,给出错误代码,并进行相应的故障处理,为维护人员提供准确的参考数据。控制系统的硬件结构如图2所示。


图2 控制系统的硬件结构

MSC1210Y5单片机简介

MSC1210Y5PAGT是TI公司生产的集成数字/模拟混合信号单片机,具有运行速度快、功耗低等特点,其时钟频率最高可达33 MHz,运行速度高达825 MIPS,具有很强的数据处理能力;芯片内集成了大量的模拟和数字外围模块:内含32KB的Flash程序存储器,并具有多重密码锁死(LOCK)功能,保密性较强。在对Flash程序存储器编程方面,可通过SPI串行接口或一般的编程器进行重新编程,因而可对用MSC1210Y5组成的系统进行在系统编程,给新产品的开发、老产品升级和维护带来极大的方便。单片机内还包含8通道模拟信号输入,1~128倍可编程增益放大器、24位高精度A/D转换器,非常适合钞票厚度检测等模拟信号的处理。

钞票厚度信号采集电路

本系统采用电涡流传感器对钞票的厚度进行采集,电涡流传感器能静态和动态的非接触、高线性度、高分辨率地测量被测金属导体表面与探头表面的距离,将位置信号转换成模拟电压信号,然后通过CPU内部的24位高精度ADC进行转换,检测精度可以达到0.0005mm。

CPLD电路

为了简化硬件电路结构,提高系统的集成度和可靠性,同时,也减轻应用系统中处理器的负担,采用了基于CPLD 的步进电机控制电路,把处理器接口逻辑、步进电机转速和转动角度控制、环形脉冲分配器、斩波恒流驱动逻辑等几个模块在一个CPLD 器件中实现,实现系统的挖钞时序控制。步进电机控制的逻辑如图3所示。


图3 步进电机控制的逻辑图

通信和在线编程电路

出钞模块和主机的通信接口采用RS-232C接口,通过CPU的串行口0来实现通信,接口芯片采用MAX3232。MCU的在线编程与通信电路共用CPU的串行口0,二者之间通过跳线来实现接口的转换,在线编程时, PC将产生RST信号,RST信号经过MAX3232转换成TTL电平信号给MCU编程信号PSEN,MCU复位后开始接收下载的程序。

键盘和显示电路

键盘和显示电路的主要功能是在没有外部主机的情况下,维护人员也可以对出钞模块进行相应的操作,通过键盘输入相应的命令,并将执行结果在LED上显示出来。LED显示采用静态方式,通过CPU的串口和74LS164串行移位来实现,大大节省了CPU资源。


图4 控制系统软件主流程图

出钞模块控制系统软件设计

出钞模块控制系统软件结构


出钞模块控制软件主要接收ATM主机的控制命令,根据这些命令执行相应的功能操作,并将执行结果送回到ATM主机,因此可以将ATM出钞模块的控制软件划分为通信模块和命令功能模块。通信模块实现ATM出钞模块与ATM主机之间的信息交换,命令功能模块主要实现挖钞命令、送钞命令、 未取钞回收命令、通道清理与复位命令、获取钞箱信息命令、出钞口取钞检测命令和拒绝命令操作,ATM主机通过发送这些命令实现顾客在ATM机上的取款操作。整个控制系统软件主程序如图4所示。

通信模块

出钞模块通信采用中断方式,CPU接收到一个命令包之后,设立一个标志,主程序检测到这个标志后就读取命令包。

出钞模块在执行命令后,以一定格式将命令的执行结果返回到PC主机,在执行命令过程中出钞模块不接收命令,直到命令返回。

命令功能模块

命令功能模块实现挖钞命令、送钞命令、 未取钞回收命令、通道清理与复位命令、获取钞箱信息命令、出钞口取钞检测命令和拒绝命令操作。ATM主机软件在启动时,先要发送通道清理与复位命令,检测出钞模块的状态;进行一次完整的取款操作需要依次发送获取钞箱信息命令、挖钞命令、送钞命令和出钞口取钞检测命令;如果在规定的时间内检测到钞票没有取走,则发送未取钞回收命令,将出钞口钞票回收,拒绝命令是在挖钞命令执行出错的时候发送。每个命令都必须按照这个顺序来发送,否则被视为非法命令,不予执行。

1通道清理与复位命令

此命令的主要功能是复位出钞模块内部寄存器、清理挖钞通道和送钞通道,如果有残余钞票在通道中,则将其送入回收箱,同时检测各个部件是否正常。ATM主机软件在启动时,首先要发送此命令对出钞模块进行通道清理和复位,出钞模块将相应的执行结果返回到控制主机,如果出钞模块有故障返回码,表示出钞模块不能正常工作,ATM主机控制软件需要停止取款的功能,并给出相应的故障提示,等待维护。

2获取钞箱信息命令


此命令的主要功能是出钞模块将模块中钞箱的配置信息,包括各个钞箱中钞票的面额和币种信息返回给主机控制软件,在有取款操作时,主机控制软件通过这些信息来分配每个钞箱的出钞数量。

3挖钞命令


此命令的功能是执行主机控制软件所分配的各个钞箱的出钞数量,在对每个通道钞箱进行挖钞操作时,都要对钞票进行检测,如果有尺寸或者厚度不合格的,则打开分拣器将其送入废钞箱中,将合格的钞票送到叠钞板上,整个命令执行完成后将各个钞箱的出钞数量和废钞数量返回到主机,等待主机控制软件发送下一个命令,即送钞命令。

4送钞命令

此命令的主要功能是把叠钞板上的钞票送到闸门口,取款人就可以将钞票拿走。

5出钞口检测命令

此命令的主要功能是检测闸门口的钞票是否被拿走,并将信息返回到主机,如果检测到钞票已经拿走,机械手将回到原始位置。

6未取钞回收命令


如果在银行规定的时间内(一般是30秒,时间由主机控制软件控制)闸门口的钞票都未拿走,主机控制软件将发送此命令,通知出钞模块将闸门口钞票回收,送入回收箱中。

7拒绝命令

在挖钞命令执行过程中出现了故障,整个命令未成功执行,或者是挖钞命令执行成功,但由于某些原因,不能进行送钞操作,此时主机控制软件需要发送拒绝命令,通知出钞模块将叠钞板上的钞票送入回收箱中。

结语
由于篇幅所限,本文只能从出钞模块控制系统的功能着手对整个控制系统做一个简单的介绍。本文所介绍的出钞模块控制系统已应用于ATM机中,实践证明,系统可靠、稳定。

参考文献

1.邓宏彬等编著.MSC121X系统级单片机原理与应用. 北京:机械工业出版社,2004
2.艾克武等译. 嵌入式系统的C程序设计.机械工业出版社,2002

关键字:模块  钞票  命令  主机 引用地址:ATM出钞模块的控制系统设计

上一篇:嵌入式微控制器MC68HC912B32背景调试模式设计及实现
下一篇:超声波遥控装置的设计

推荐阅读最新更新时间:2024-03-30 21:22

定制时代 谷歌模块手机开放申请
   根据此前的传闻,我们在今年将告别Nexus系列手机,同时也根据传闻,谷歌即将在明年春季推出模块化手机。而就在日前,谷歌模块化手机项目Project Ara正式开放了开发板的申请,似乎意味着一个新的时代即将到来。   目前Project Ara网站已经正式接受申请,如果你是一名对该项目感兴趣的开发者,就有机会对Project Ara手机进行的研发。不过虽然申请模式相对开放,但最终只有少数几个人能够被谷歌选中。根据页面的显示,你的经验越丰富,模块概念越优秀,那么你邀请参 与开发的机会就越大。如果你有很独特的想法,不妨申请一下。 每个功能区可独立拆装   Project Ara手机是一个崭新的概念,通过这一项目人们可以自由选择
[手机便携]
加拿大创企打造模块化电池系统 可像乐高积木一样进行拼装
据外媒报道,加拿大初创公司 Stacktronic 研发了一种新型电池系统,用于给地下采矿车辆提供电力。该模块化电池系统能够像乐高积木一样拼装起来,根据车辆的需要,打造成大小、形状和容量各异的电池,预计可为采矿作业节省时间和金钱。 (图片来源:northernontariobusiness.com) 该公司创始人之一Keith Teeple表示,该电池系统是滑铁卢大学(the University of Waterloo)机械工程系的一组学生在最后学年合作研发的,虽然最初只用于实验室测试,但是该小组意识到,该电池系统非常适合采矿业的需要。 Teeple表示:“采矿车都是特制车,形状特异,需要能够在小空间中作业,因此,
[汽车电子]
加拿大创企打造<font color='red'>模块</font>化电池系统 可像乐高积木一样进行拼装
电池模块结构化 特斯拉新电池内部结构图曝光
在去年的“电池日”活动中,特斯拉不仅展示了其新的 4680 电池,而且还展示了围绕该新电池构建的新电池架构。 受到航空航天创新的启发:将飞机机翼作为油箱而不是在机翼内部建造油箱,因此他们决定制造一种电池组作为车身结构,将前后车身下部连接起来。这个新概念的不同之处在于,特斯拉将不使用模块,而是将整个电池组构建为车辆的结构平台,而电池则可以帮助将平台作为一个整体固化。 特斯拉利用在大型铸造零件方面的专业知识,可以将大型的前后单体底部连接到该结构电池组。这项新设计减少了零件数量,减少了电池组的总质量,因此使特斯拉能够提高效率,并最终提高其电动汽车的行驶里程。预计结构性电池组将首先在即将在柏林 Gigafactory 生产的 Mo
[汽车电子]
电池<font color='red'>模块</font>结构化 特斯拉新电池内部结构图曝光
基于MSP430F149和GPS+GPRS模块实现追踪器系统的软硬件设计
1、引言 随着GPRS无线通讯、Internet网络以及民用领域GPS的普遍应用,将三者合一使用已成为当今热门的研究领域。 GPRS(GeneralPackedRadioService,通用分组无线业务)采用TCP/IP协议,非常容易和现有的Internet技术及应用平台整合,即将各种IP技术和服务同移动通信技术相结合,为用户提供各种高速度、高质量的移动数据通信业务。GPRS的移动通信、价格低廉、快速登陆、永远在线、组网灵活、信道保障、小功率防雷击等特点使得GPRS已逐渐取代GSM网络。 GPS(GlobalPositioningSystem,全球定位系统)除了更多地应用于高精尖端测量、测绘及导航领域外,也更多地推动了其在
[单片机]
基于MSP430F149和GPS+GPRS<font color='red'>模块</font>实现追踪器系统的软硬件设计
音频治疗仪电路模块设计
   电路原理: 图为音频治疗仪的电路原理。晶体管VT1与R、C移相电路组成正弦波振荡器,振荡频率在2kHz左右(此频率疗效最佳)。VT2为射极跟随器,可起隔离等作用。VT3为激励级。因为音频电疗对波形要求不高,故功放由VT4和VT5组成普通的乙类推挽放大即可。本仪器输出阻抗为 500Ω,以与人体皮肤阻抗相适配。另外,输出端与激励级之间加有负反馈(R10),以防治疗中人体阻抗突变而引起的不适感。   电源可采用一般串联稳压电路。图中变压器T1用高强度漆包线绕制,其数据如下:用D310,XE6×10铁芯,初级线径为0.1mm绕成 1000匝,次级线径为0.21mm,双线并绕250匝(也可用适当的晶体管收音机用输入变压器)。T2用D
[电源管理]
音频治疗仪电路<font color='red'>模块</font>设计
车身控制模块 —— 每辆汽车上隐秘但必备的器件
汽车电子正在实现越来越多的功能(安全性、驾驶辅助、为驾驶员提供更多的信息),对优质电子器件的需求也持续高速增加。随着与舒适性、安全性、设备和定制驾驶体验相关的功能日渐丰富,对车辆电子系统的要求也相应地越来越严苛。   车身控制模块(BCM)通过信号来协调车内不同功能。他们管理众多车辆功能,包括门锁、报警声控制、内部和外部照明、安全功能、雨刮器、转向指示器和电源管理等。被绑定到车辆电子架构的BCM在减少必需插件连接和电缆线束数量的同时,提供了最大化的可靠性和经济性。   随着对BCM功能增加的需求不断攀升,所需电缆线束的数量也在不断增加。例如,根据 Kiyotsugu Oba在其撰写的“新一代汽车的线束”一文中所说的,就紧凑型汽车而
[嵌入式]
基于HMC1022和HMC1021三轴磁阻传感器模块设计
1.引言 随着MEMS技术的快速发展,内窥镜技术已取得了重大的研究成果,特别是人体胃肠道无线胶囊内窥镜是医用电子内窥镜系统的一个重大突破。围绕着胶囊式内窥镜,越来越多的研究正在展开。但是无线内窥镜胶囊也存在不少问题,2004年的欧洲技术报告中指出,运动与姿态控制功能的实现是需要首先解决的问题,包括运动控制和定位问题,而为了保证在诊断治疗过程中运动和定位问题的有效性,对这些微型医疗胶囊在体内的空间位置进行实时的定位位置检测就显得极其重要了。在体内微型诊疗装置的定位技术方面,传统的方法一般都采用超声成像、核医学影像及荧光造型定位等技术,但是这些定位方法却存在着成本高、操作复杂,对人体容易造成辐射和无法满足长时间动态定位的缺点。许多
[医疗电子]
CSP遭IC布线困扰芯片集成寻突破
  如今的半导体布线通过制程的压缩,先进的工艺,支持更大尺寸的晶片,呈现出单芯片承载更多的功能的趋势。在数字电路方面尤其如此,其经济上的费用规模非常容易被控制:早期的CPU迅速扩张以致包含各种类型的I/O, 缓存,存储器等等。而其在模拟电路方面依然如此,比如“完全”12位D/A转换器就要求“真完全”DAC与输出缓冲器集成然后“真实完全”DAC与内置校准电压源集成。   最近在与一个主要线性IC商家的会议上,工程师们指出芯片规模封装(CSP)技术可能受到IC布线公理的困扰。   对于CSP,事实上封装就是模型本身,而且通过与更小规模级别的集成,几乎不会或没有明显的损害。在CSP中,有限功能,更小的IC将带来在尺寸,性能以及对市场
[焦点新闻]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新工业控制文章
换一换 更多 相关热搜器件
更多每日新闻
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved