基于单片机、EDA技术的波形发生器的设计

发布者:国宝集团最新更新时间:2009-03-04 来源: 商丘职业技术学院学报关键字:单片机技术  EDA技术  DDFS技术  波形发生  FPGA  VHDL语言 手机看文章 扫描二维码
随时随地手机看文章

  该波形发生器以单片机(MCS8031)为中心控制单元,由键盘输入模块、数码管显示模块、D/A波形发生模块、幅值调整模块组成。采用DDFS技术,先将要求的波形数据存储于EEPROM中,这样可以保证掉电以后波形数据不丢失。

  为了达到所要求的高速度,采用FPGA(ALTEAR 公司的 EPF10K10LC84-4, 晶振频率可达 40MHz)来实现波形的发生,通过DDFS技术(直接数字频率合成技术)、VHDL语言和单片机汇编语言编程技术的完美结合实现了对正弦波、方波和三角波三种波形的频率、幅值的设置和发生。

  随着深亚微米半导体技术的进步,可编程逻辑器件及EDA技术的应用已经相当普及。基于可编程逻辑器件的高频性质和单片机强大的数据处理功能,二者结合的技术也有相当的影响力。本设计中涉及到单片机汇编语言、VHDL语言的运用,充分地利用了二者的优点,制作了一套波形发生系统。

  1  系统设计

  整体设计由三大模块组成:单片机控制部分、可编程逻辑器件(FPGA)部分、模拟电路部分。其系统方框原理图如下所示:

系统方框原理图

  波形发生采用DDS技术,可以很方便地产生各种高质量的波形,DDS的基本原理是:先将要产生的波形数据存入波形发生器,然后通过改变参考脉冲的频率,将波形数据传送给D/A转换器,滤波处理后便可以输出光滑的合成波形。为了提高所产生的波形频率,采用高频率特性的FPGA(ALTERA公司的 EPF10K10LC84-4),后级电路采用有较高的转换速度的DAC0832作为D/A转换。

  1.1 单片机部分

  在设计中,采用MCS8031为处理器,P2.7作为8279的片选端,P2.6作为FPGA的片选端, P2.5为DAC0832(a)的片选端。P0口作为三者的低8位地址和数据线。单片机控制DAC0832(a),使其输出为0~5V可变电压,作为 DAC0832(b)的参考电压,于是可控制输出波形的幅值。由于采用7位数据控制,精度可达到0.039V。

  1.2 FPGA模块

  设计中我使用了ALTRA公司的MAXPLUSⅡ 10.0系统,采用原理图和VHDL语言编程相结合的形式,充分地发挥了FPGA的高速和现场可编程的能力。

  在FPGA中通过编程片内实现比例乘法器(cc14527),在单片机的控制下,FPGA接收单片机传送过来的用户要求的波形数据及其频率数据,并送到比例乘法器以产生所需要的输出频率值。顶层图如下:

顶层图

  其中:P20作为FPGA的片选端,低电平有效,高电平时保持现有状态,与单片机的P2.6相连。WR为FPGA的写信号,与单片机的写端口相连。当P20为低电平时,单片机可向FPGA写数据,以达到传送命令以及数据的目的。ALE为输入信号,与单片机的ALE信号相连,用于FPGA片内锁存地址,配合WR信号进行单片机与FPGA的通讯。P0[7..0]共8条数据线,为单片机P0口的接口,用于地址和数据的传送。CLK为FPGA的基准频率(16MHz)。WR0832用于控制DAC0832(b),与其WR端相连,在其下跳沿时DAC0832(b)可以取到存储器中相应给定地址的数据。 CE:用于控制EEPROM28C64,与其片选端CE相连。CE1用于控制DAC0832(b),与其片选端CE相连。ADDRESS[9..0]为 EEPROM28C64的地址信号,用于取址。

  EEPROM28C64中存有波形数据,单片机通过控制FPGA使其输出的频率为用户所需频率的128倍,用于控制EEPROM28C64的输出值的频率,于是DAC0832(b)的输出波形频率也相应地改变。在FPGA内主要完成比例乘法器的功能,用于频率的控制。 

  单片机与FPGA通讯接口原理如下图所示:

单片机与FPGA通讯接口原理

  其中:SEL信号,用于控制波形的形状,共有三种波形(正弦波、方波、三角波)。Q0[3..0]~Q5[3..0]用于6级级联比例乘法器的置数输入。ST为级联比例乘法器的片选端,低有效。

  FPGA片内实现寄存器,可对单片机传输的数据和命令进行寄存,具体如下:

  ⑴命令寄存器

  入口地址:FFH  命令字:FFH(ST有效),00H(ST无效)
入口地址:00H  命令字:E0H(显示正弦波,sel为00),E1H(显示方波,sel为01),E2H(显示三角波,sel为10)。

  ⑵ 数据寄存器

  入口地址:01H,02H,03H分别存储单片机传送的6位10进制数。这些数据是用户要求的频率数通过单片机乘8处理后传送过来的,为乘法器提供频率数据。

  FPGA对DAC0832及EEPROM28C64控制接口如下图所示:

FPGA对DAC0832及EEPROM28C64控制接口

   WR0832为DAC0832读信号,下跳沿读取数据。CE、CE1分别为DAC0832、EEPROM28C64片选端。ADDRESS[9..0]为 EEPROM28C64地址信号。ADDRESS[9..0]的高两位为SEL[1..0],时钟信号CLK上升沿时ADDRESS[6..0]:自增 1,EEPROM28C64输出相应的波形数据。同时CLK下降沿时,DAC0832读取波形数据。

  3  模拟部分

  DAC0832与单片机采用单缓冲方式接口电路,由于DAC0832内部含有锁存器,具有锁存功能,所以不必通过373锁存。DAC0832的模拟电压输出电路如下:

DAC0832的模拟电压输出电路

  滤波部分采用带通滤波,使低于1HZ的频率信号和高于100KHZ的频率信号被滤掉,增加波形的平滑度。

单片机流程图

关键字:单片机技术  EDA技术  DDFS技术  波形发生  FPGA  VHDL语言 引用地址:基于单片机、EDA技术的波形发生器的设计

上一篇:基于AT89C51的音量控制电路与程序设计
下一篇:CP2102与C8051的USB-CAN转换器设计

推荐阅读最新更新时间:2024-03-16 12:25

拉普拉斯算子的FPGA实现方法
   引 言   在图像处理系统中常需要对图像进行预处理。由于图像处理的数据量大,对于实时性要求高的系统,采用软件实现通常难以满足实时性的要求。Altera的QuartusⅡ作为一种可编程逻辑的设计环境,由于其强大的设计能力和直观易用的接口,越来越受到数字系统设计者的欢迎。QuartusⅡ支持Altera的IP核,包含了LPM/Megafunctions宏功能模块库,设计者只需要选取设置这些功能模块的相关参数就可以在程序中调用,从而使用户可以充分利用成熟的模块,大大简化了设计的复杂性,加快了设计速度。   拉普拉斯算子是一种重要的图像增强算子,它是一种各向同性滤波器,即滤波器的响应与滤波器作用图像的突变方向无关,而且实现简单,
[嵌入式]
拉普拉斯算子的<font color='red'>FPGA</font>实现方法
赛灵思推出新型MICROBLAZE嵌入式套件 可使嵌入式系统设计快速启动
低成本套件包括赛灵思 屡获殊荣 的 Platform Studio 集成设计环境、 Spartan-3E 嵌入式开发板和灵活的 32 位 MicroBlaze 软处理器   2006 年 11 月 22 日 , 北京—— 全球可编程逻辑解决方案领导厂商 赛灵思公司 ( Xilinx, Inc. (NASDAQ: XLNX) ) 今天宣布推出 MicroBlaze 开发套件— Spartan-3E 1600E 版本,它为嵌入式开发商提供了一整套在开发处理器系统时需要的完整设计环境。 Spartan-3E 1600E 版本提供有包括硬件、
[嵌入式]
基于DSP和FPGA的嵌入式同步控制器实现
摘 要:针对印染设备多单元同步控制中动态性和稳定性的问题,提出一种基于DSP和FPGA的嵌入式同步控制器设计方案。DSP作为运算控制的核心,负责控制算法的实现;FPGA作为数据采集模块的核心,负责数据采集的实现。该系统具有结构灵活,通用性强的特点,且大大减少了系统的外围接口器件,降低了成本。采用Bang-Bang控制和数字PID控制相结合的双模控制算法,满足了系统响应快速性和稳定性的要求,提高了可靠性,具有很高的实用价值。 关键词:嵌入式;同步控制;DSP;FPGA 在印染机械设备生产加工过程中,各个传动单元分别由独立的电机驱动。为了保证整机各单元同步协调工作,提高产品质量,需要设计相应的同步控制器。多单元同步传动是印
[嵌入式]
基于DSP和<font color='red'>FPGA</font>的嵌入式同步控制器实现
基于NI LabVIEW平台快速开发医疗电子设备
  针对 医疗设备 行业的投资最近几年一直处于上升阶段,在过去两年,针对医疗设备的风险投资几乎翻倍,2007年更是达到了40亿美元。无论从全球角度还是在中国市场,小型的、未上市的医疗设备制造商在具备产品、市场和创新的元素下,正逐步成为投资新宠。对于这些小型公司来说,如何从激烈的市场竞争中站稳脚跟并脱颖而出是非常困难的事情。他们的核心技术人员也许是生物医学领域的专家,掌握了一定的专利或研究成果,但如何在团队人员非常有限的情况下,快速的将专利或研究成果转化成产品、并保证产品的可靠性和稳定性是很大的难点。通过NI所提供的图形化开发环境LabVIEW和商业化 嵌入式 原型平台,领域专家或研发人员可以无缝集成硬件I/O与算法,在有限的团队人
[测试测量]
基于FPGA的多DSP红外实时图像处理系统
随着红外探测技术迅猛的发展,当今红外实时图像处理系统所要处理的数据量越来越大,速度要求也越来越快,利用目前主流的单DSP+ FPGA硬件架构进行较为复杂的图像处理算法运算时,有时就显得有些捉襟见肘了。使用多信号处理板虽可满足复杂处理的要求,但系统成本和设计复杂度会大大增加,对于对空间质量有严格要求的系统也是不可行的,多处理器系统应用的需求越来越迫切。 本文提出了一种新型的基于FPGA和四端口存储器的三DSP图像处理系统。它不同于以往的主从处理器结构,而是3个处理器分别连接四端口存储器的3个端口,处于同等地位,对图像数据并行处理,FPGA占用存储器另一端口进行数据流的控制管理和其他功能实现。这种连接方式增强了系统的重组性和扩展行,软
[嵌入式]
基于<font color='red'>FPGA</font>的多DSP红外实时图像处理系统
基于FPGA 和USB2.0 的高精度数据采集系统设计
  0 引言   随着数字通信技术的逐步发展,高速数据采集系统已经逐步取代传统的数据采集系统,其广泛应用在众多场合。新一代可编程逻辑器件FPGA 都拥有较多的IO 端口以及强大的数据处理能力,这也为高速高精度数据采集系统的研发提供了基础条件。   1 工作原理   本文设计的数据采集卡硬件原理框图1 如下所示。   如图1 所示,前端模拟电路将外界的模拟信号转化成为ADC能够接收到的数据格式;高速时钟电路提供500MHz 的高速时钟,ADC 在此时钟作用下,进行ADC 变换。在整个数据采集卡中,FPGA 是进行采集控制,以及数据接收的核心。FPGA 按照1 :4 的比率对将接收到的500MHz 的LVDS 差分
[嵌入式]
Xilinx 20nm产品细节揭秘 抢占20nm FPGA制高点
        前不久,赛灵思(Xilinx)发表其20 nm产品路线图,在之前的28nm产品上,Xilinx声称他们领先竞争对手一代,落实了All Programmable器件战略(FPGA、SoC和3D IC),推出了Vivado设计环境和开发套件,结合其丰富的IP资源,为市场提供了高性能、低功耗和有利于减少系统/BOM成本的产品。赛灵思公司全球高级副总裁,亚太区执行总裁汤立人表示,Xilinx在20nm产品的表现上还将保持领先一代的优势,下一代FPGA及第二代SoC和3D IC将与Vivado设计套件“协同优化”。 据汤立人介绍, 在28 nm 产品阶段, Xilinx 在2011 年第一季度首家发售了该工艺的FPGA
[嵌入式]
基于FPGA 的谐波电压源离散域建模与仿真
摘要: 用于 电能计量 的谐波电压源要求具有很强的谐波合成能力,因此,对采样频率要求较高。目前,绝大多数谐波电压源装置采用 DSP 作为控制 芯片 。DSP 虽然有着很强的信号处理能力,但其采样率不高,不能满足电能计量用谐波电压源采样精度的要求。对此,提出了将FPGA 应用于谐波电压源的研究中,采用基于SPWM 的双闭环PI控制策略,在VHS-ADC 高速信号处理平台上搭建离散域控制模型并进行仿真。仿真结果表明,输出波形稳定,具有较小的畸变率,说明了基于FPGA 进行谐波电压源研究的可行性。    0 引言   近年来,由于电力 电子 装置等非线性负荷的大量增加,电力系统的谐波污染越来越严重,严重地影响了电能计量的准确性和合理
[嵌入式]
基于<font color='red'>FPGA</font> 的谐波电压源离散域建模与仿真
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
  • 学习ARM开发(16)
    ARM有很多东西要学习,那么中断,就肯定是需要学习的东西。自从CPU引入中断以来,才真正地进入多任务系统工作,并且大大提高了工作效率。采 ...
  • 学习ARM开发(17)
    因为嵌入式系统里全部要使用中断的,那么我的S3C44B0怎么样中断流程呢?那我就需要了解整个流程了。要深入了解,最好的方法,就是去写程序 ...
  • 学习ARM开发(18)
    上一次已经了解ARM的中断处理过程,并且可以设置中断函数,那么它这样就可以工作了吗?答案是否定的。因为S3C44B0还有好几个寄存器是控制中 ...
  • 嵌入式系统调试仿真工具
    嵌入式硬件系统设计出来后就要进行调试,不管是硬件调试还是软件调试或者程序固化,都需要用到调试仿真工具。 随着处理器新品种、新 ...
  • 最近困扰在心中的一个小疑问终于解惑了~~
    最近在驱动方面一直在概念上不能很好的理解 有时候结合别人写的一点usb的例子能有点感觉,但是因为arm体系里面没有像单片机那样直接讲解引脚 ...
  • 学习ARM开发(1)
  • 学习ARM开发(2)
  • 学习ARM开发(4)
  • 学习ARM开发(6)
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved