基于FPGA 和USB2.0 的高精度数据采集系统设计

发布者:丹青妙手最新更新时间:2013-07-31 来源: dzsc关键字:USB2.0  数据采集系统  模拟信号 手机看文章 扫描二维码
随时随地手机看文章

  0 引言

  随着数字通信技术的逐步发展,高速数据采集系统已经逐步取代传统的数据采集系统,其广泛应用在众多场合。新一代可编程逻辑器件FPGA 都拥有较多的IO 端口以及强大的数据处理能力,这也为高速高精度数据采集系统的研发提供了基础条件。

  1 工作原理

  本文设计的数据采集卡硬件原理框图1 如下所示。

  如图1 所示,前端模拟电路将外界的模拟信号转化成为ADC能够接收到的数据格式;高速时钟电路提供500MHz 的高速时钟,ADC 在此时钟作用下,进行ADC 变换。在整个数据采集卡中,FPGA 是进行采集控制,以及数据接收的核心。FPGA 按照1 :4 的比率对将接收到的500MHz 的LVDS 差分数据流进行分流和降速。

  数据分流之后由于数据速率与USB 接口数据传输速度不同,所以还要进行FIFO 缓冲。FIFO 的写时钟与串行收发器保持同步,当FIFO 缓冲器被写满之后,由FPGA 读取FIFO 缓冲器中的数据,并且将数据通过USB 接口芯片传输到上位机中进行显示或者存储。

  2 系统设计

  数据采集卡主要包括高速A/D 转换模块、FPGA 主控模块和USB 接口电路三个模块。

  2.1 高速A/D 转换模块

  ADC 芯片作为模数转换的核心,设计采用TI 公司推出的ADS5463,其采用流水线型结构,最高采样速度500MSPS,精度12位,拥有高速差分数字接口LVDS.

  对于高速ADC 采样电路,模拟信号输入接口的设计不仅要保证足够的传输带宽而且要完成将单端的输入信号变成差分信号的功能。本设计使用射频变压器将单端输入转换为差分输入,并通过TI 公司生产的可级联中频放大器THS9001 芯片实现中频信号放大的功能。

  在A/D 转换模块中,采样始终的质量非常重要。在本文的设计中,采用了锁相环芯片CDCM61001 生成采样时钟,并利用FPGA内部PLL 资源倍频生成采样时钟作为备用的采样时钟。本设计是用25M 的时钟倍频20 倍生成500M 以LVPECL 格式的差分电平形式。

  高速A/D 转换模块的原理图如图2 所示:

  2.2 FPGA 主控模块

  FPGA 是整个采集模块的控制核心,其主要的功能是接收数据,并且对数据进行降速、分流以及缓冲,并且将数据传通过USB接口传输给上位机。在本文的设计设计中,选择Cyclone II 系列的EP2C35F672C6,它属于一款中等密度的FPGA,相比较于ASIC低得多的成本在单片机上实现复杂的数字系统。

    设计使用FPGA 的Bank3 和Bank4 接收来自ADS5463 输出的高速LVDS 数据,包括DRY(数据输出准备好)以及OVR(数据溢出位)。Bank5 和Bank6 用于USB 接口芯片的控制,其余BANK 留作扩展之用。

  在FPGA 主控模块中,AD 输出信号和时钟信号被传输到FPGA 中的DIFFIO_RX p/n 通道上。其中p 表示正差分通道信号,而n 表示负差分通道信号。在这部分的软件设计中,使用altvds模块接收ADC 的输出数字信号、始终信号,并且利用DMUX 对数据流进行串行- 并行转换,以方便对输入信号的后续操作。

  数据流在DMUX 模块的仿真结果如图3 所示。

  如图3 所示,Data_in 是一路500MHz 的数据流,而dout1,2,3,4 为Data_in 通过DMUX 进行降速和分流之后的结果。从图中可以看出,500MHz 的高速数据流经过DMUX 降速、分流之后的输出较干净、平滑,在高速状态下,达到这种结果是比较理想的,对系统设计上也是很有利的。[page]

  经过DMUX 降速之后的数据流已经达到了FPGA 的处理要求,但是由于FPGA 的处理速度和与上位机相连的USB 接口速率不匹配,为此需要采用FIFO 来进行缓冲。在本文的设计中,采用两个容量为4K,宽度为32 位的FIFO 来来作为FPGA 与USB 接口之间的数据缓冲。FPGA 接收高速DMUX 降速后的数据流,并且写入到FIFO 中,当FIFO 写满8K 之后,启动读始终,将FIFO 中的数据通过USB 接口分批读取到上位机中。

  2.3 USB 接口电路设计

  USB 接口的主要功能是将FPGA 缓冲区中的数据读取到上位机中。在本文的设计中,USB 接口电路采用CYPRESS 公司CY7C68013A 芯片。CY7C68013A 芯片集成了串行接口引擎来方便读取FPGA 中的数据。芯片采用2MHz 的时钟信号,同时使用外部EEPROM 存储固件程序。在USB 接口电路的初始化过程中,首先需要从EEPROM 中读取固件程序。FPGA 通过USB 接口与上位机进行数据传送的流程图如图4 所示。

  如图4 所示,EZ-USB FX2 芯片中包含有GPIF 和SlavFIFO 两种接口方式,可以满足不同数据流速度以及用户对数据处理实时性的要求。在CY7C68013A 芯片中,其接口时钟与FPGA中的IFCLK 引脚连接,从而在FPGA 中的FIFO 缓冲写满时,FPGA可以控制USB 接口电路开始从FIFO 缓冲区中读取数据。

  USB 接口的主要工作室实现对FIFO 缓冲区中数据的读取,因此其设计的逻辑也主要是对FIFO 读、写状态机的监控,其实现的流程如下:在接收到数据读指令之后,分成8 次读取FIFO中的128 位数据,并且将这些数据一起存放到FPGA 控制寄存器组中;将FPGA 的FIFO 中的数据读出,并且写入到EP6 端点缓冲区中。状态机先由空闲状态进入等待状态;当EP2 不为空时,进入读状态EP2 ;当读命令有效时,那么就进行数据的读取并且发送相应的命令,之后回到空闲状态;在等待状态下,当EP2 为空,EP6 不满时,开始写EP6,写满后也回到空闲状态。

  3 系统测试采用以产生频率为20MHz 的高频信号发生器,峰值为2.36Vpp 的正弦波作为模拟输入。系统的测试采用SignalTapII来获取两路数据采样数据,并且模拟转后后存入到FIFO 中的数据和信号。采样数据的模拟波形图如图5 所示。

  从图5 可以看出,由于两路输入的信号存在一定的增益和偏移误差,从而导致所收集数据的信号增幅值之间,产生了不一致现象。采用快速傅里叶变化分析法,首先在输入的输入信号上采集N 个点做快速傅里叶变换,假设信号谱线在K 和N-K-1 之间,那么就可以得到信噪谐波比SINAD :

  为避免信号频谱泄露,要求波形的采样率fs 和输入信号频率f0,满足其f0=fs*M/N,其中M 为一个合适的正整数。

  此方法可以进行ADC 的有效位数的测试,实验ENOB,将其取6 次得到的平均结果约为6.2.后面还要将采集到的数据进行进一步的分析,来检验通道间的不匹配对系统性能的影响。

  4 结论

  介绍了一种基于FPGA 基于FPGA 和USB2.0 的高精度数据采集系统,通过FPGA 对AD 的工作方式,进行合理的配置,并充分利用其内部自带的逻辑资源,实现对数据的缓存,避免使用其他微处理器进行的数据处理,本设计可以很好的减少芯片数和空间体积,更有利于FPGA 的发挥,具有简单、灵活、功能多样的特点。

关键字:USB2.0  数据采集系统  模拟信号 引用地址:基于FPGA 和USB2.0 的高精度数据采集系统设计

上一篇:Griffin的数字音频配件采用赛普拉斯的PSoC®3
下一篇:基于USB的解决方案

推荐阅读最新更新时间:2024-05-02 22:43

基于ADS8364的数据采集系统设计
实时数据采集与处理技术在许多领域得到广泛应用。在图像处理、瞬态信号检测、软件无线电、雷达信号分析、医用成像设备和工业现场控制方面,需要对连续变化的模拟信号进行同步数据采集,因此,对运动过程中变化的信号高速A/D采集是十分重要的 。本文介绍一种基于TI公司的TMS320F2812 DSP芯片(以下简称F2812)与A/D转换芯片ADS8364构成的同步高精度的数据采集系统,解决了大型曲面钢板结构参数测量机器人系统中传感器信号采集的关键问题。   1 系统原理   本采集系统结构框图如图1所示,由前端的系统(包括电流信号取样、信号调理模块、A/D转换模块、DSP处理器控制模块、CAN总线网络)以及上位机、PC104机、上位机CAN
[电源管理]
基于ADS8364的<font color='red'>数据采集系统</font>设计
基于电力线载波技术的远程电流数据采集系统的设计
简介:介绍了一种利用半导体磁阻式电流传感器(MRCS)和LM1893芯片实现的远程电流数据采集系统。系统硬件主要由AT89C2051单片机主控电路、串行ADC0832模/数转换电路、LM1893电力线载波发送电路等三部分组成;软件以MCS-51汇编语言编制,并给出了软件设计的流程图。由于采用了电力线载波技术,该系统可用于远距离信号的测量和传输,具有较高的实用价值。 在现代生产过程的检测和控制中,电流参数的采集是最普遍最重要的项目之一。在一些数据采集系统中,测量现场距离较远且环境恶劣,计算机主控系统与测量装置、传感器远离。传统的方法是采用长距离的电缆系统或通过无线电传输,但其成本较高或占用无线电频率资源。电力线载波技术很好地解决
[单片机]
基于电力线载波技术的远程电流<font color='red'>数据采集系统</font>的设计
基于CY7C68013芯片的高速数据采集系统的设计方法
  在图像处理、瞬态信号测量等一些高速、高精度的应用中,需要进行高速数据采集。USB 2.0接口以其高速率等优点渐有取代传统ISA及PCI数据总线的趋势,热插拔特性也使其成为各种PC外设的首选接口。EZ-USB FX2是Cypress公司推出的集成USB 2.0的微处理器,它集成了USB 2.0收发器、SIE(串行接口引擎)、增强的8051微控制器和可编程的外围接口。本文将介绍基于EZ-USB FX2系列CY7C68013芯片的高速数据采集系统的设计,该系统具有限幅保护功能,固件和驱动程序的编写简便,能够完成对数据的高速采集和传送。   数据采集系统方案设计   数据采集系统的框图如图1所示,硬件电路如图2所示。其中,AD
[嵌入式]
基于FPGA+DSP的雷达高速数据采集系统的实现
0 引言   随着雷达数据处理技术的快速发展,需要高速采集雷达回波信号。然而激光雷达的发射波及回波信号经光电器件转换后,形成的电信号脉宽窄,幅度低,而且背景噪声大,如采用低速的数据采集系统进行采集,存在数据精度不高等问题。同时,为避免数据传输不及时,发生数据丢失,影响系统的可靠性和实时性,需设计开发高速数据采集系统。   设计中针对前端输出约-25~25 mV,带宽为20 MHz的信号,采用高带宽,低噪声,高数据传输率,高分辨率数模转换芯片AD9235;利用XC2V250内部的大小为6 KB的异步FIFO实现AD9235转换器与TMS320C6201间的高速数据传输。采集系统的采样率为30 MHz,分辨率为12位,内部异步缓存
[嵌入式]
基于FPGA+DSP的雷达高速<font color='red'>数据采集系统</font>的实现
基于FPGA的模拟信号波形的设计
1 引言   波形发生器已经广泛的应用在通信、控制、测量等各个领域,如锯齿波、正弦波、方波等波形常用于电路的设计与调试。随着电子技术的迅猛发展,数字化正逐渐地成为电子产业的发展趋势,各公司都将自己的产品向数字化、集成化、小型化等方向进行拓展。众所周知,数字化的电子产品有其不可替代的优势,譬如体积小、集成程度高、抗干扰能力强等特点。但是,数字电路只能够较好地处理脉冲波形,即只对l和0形成的方波处理得很好.对于连续渐变的信号不能够很好地处理,而这恰恰正是模拟电路的优势所在。本文将数字电路与模拟电路相结合,即通过FPGA来产生所需各种模拟波形的控制信号,然后通过模拟电路来处理渐变信号,这样町以得到各种清晰的波形。   2 示波器显示原理
[嵌入式]
基于FPGA的<font color='red'>模拟信号</font>波形的设计
分析液晶电视机的电路结构
打开液晶电视的外壳,我们看见的只是几块电路板,它们分别是: 1、模拟信号电路板:用于接收、处理和传输模拟信号的电路板。通常该电路板包括调谐器及中频电路(即是电视信号接收电路)、音频信号处理电路两部分。这些电路中的信号均属于模拟信号。 2、数字信号电路板:用于接收、处理和传输数字信号的电路板,包括数字信号处理电路、系统控制电路、接口电路等部分。 1)、数字信号处理电路:是处理视频图像信号的关键电路,播放电视节目时显示的所有景物、人物、图形、图像、字符等信息都与此电路相关。通常该电路主要由视频解码器、数字图像处理芯片、图像存储和时钟晶体等组成。 2)、系统控制电路:是液晶电视机整机的控制核心,电视机执行电视节目的播放、声音的输出、调台
[嵌入式]
分析液晶电视机的电路结构
嵌入式卫星MODEM在监控和数据采集系统中的应用
在勘探、油气管线、输变电、水文、能源、环境、野生动物监测、无人驾驶飞机、训练靶机、民航无线“黑盒子”待领域的监控和数据采集(SCADA)系统中,人们的一些绝妙设计方案往往因为找不到一种可靠、可行的数据传输手段而难以实施。 Globalstar(全球星)的数据传输技术为涉及上述高新技术领域的应用提供了高性能价格比的解决方案。 基于拨号接入的数据传输方案 如图1所示,DCEg是Globalstar的卫星终端,有三种类型: 一种是以一块电路板形式的卫星MODEM模块,物理尺寸为190×75×17mm,重量为180g,数据接口为RS232。 第二种是带内置MODEM(built-in modem)的语音、数据两用卫星手
[嵌入式]
基于PCI总线的大容量雷达数据采集系统的设计
【摘 要】 详细介绍了基于计算机PCI总线大容量雷达数据采集系统的研制和实现方法。该系统提供了两路20MHz最高采样频率、12位采样精度的数据采集通道。   关键词:PCI总线,数据采集,VHDL,CPLD 1 引 言   数据采集技术是信号处理一个非常重要的环节,广泛应用于雷达、通信、遥测遥感等领域。在研制基于新型连续波噪声雷达体制的新型连续波雷达时,为了研究更加有效灵活的雷达信号处理算法,利用计算机这个通用的计算和控制平台,先将雷达信号采集到计算机上,然后在计算机上进行雷达信号处理算法的研究。课题要求对雷达I和Q两个通道的信号进行采集,采样精度为12位,最高的采样频率为20兆。传统的基于ISA、EISA和VL总线的数据采
[模拟电子]
基于PCI总线的大容量雷达<font color='red'>数据采集系统</font>的设计
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved