基于单片机的EV动力蓄电池组电量计量系统

发布者:幸福满溢最新更新时间:2011-01-19 来源: 工业控制计算机关键字:电动汽车  蓄电池  电量计量  单片机 手机看文章 扫描二维码
随时随地手机看文章

引言

    随着汽车工业的迅速发展,解决汽车尾气排放所带来的大气污染问题的较好方案是发展无空气污染的交通工具,电动汽车随之应运而生。以蓄电池作为动力源的电动汽车,无论从技术上还是经济上都是最可行的。

    电动汽车用的动力蓄电池通常由多节单体电池串联或者并联构成,一般串联的单体电池数可达到十至几十个,单体电池电压一般是12V,总电压在100V以上, 总容量在100Ah以上。本文所阐述的蓄电池性能检测系统在结构设计上可以根据需要增加或减少被检测电池的数量,具有较高的灵活性,单片机控制使精度可达 1%,利用改进的开路电压法进行数据运算,进一步提高了精度。

    由于铅酸蓄电池容量有限并具有腐蚀性,镍镉蓄电池中镉是有污染的重金属,而镍氢电池的容量、充放电特性都满足要求,并且环保,因此镍氢蓄电池是未来电动汽车用蓄电池的发展方向。本文的电动车蓄电池组管理及电量计量系统就是针对镍氢蓄电池而设计的。

镍氢电池的充放电特性

    镍氢电池由镍氢化合物正电极、储氢合金负电极以及碱性电解液(比如30%的氢氧化钾溶液)组成,充、放电时的电化学反应式如下:

电池正极:

Ni(OH)2+OH-→NiOOH+H2O+e

电池负极:M+H2O+e→MH+OH-

电池总反应:

M+Ni(OH)2→NiOOH+MH

    在以上各方程中,(正方向)正向化学反应方向为蓄电池充电时的化学反应方向,(反方向)反向化学反应方向为蓄电池放电时的化学反应方向。M为储氢合金;MH为吸附了氢原子的储氢合金。

    在镍氢电池恒流充电的起始阶段,电池端电压迅速上升,而在电池电量接近充满时又稍微有些下降。镍氢电池充电内阻较小,因而具有较高的充电效率。充满电的镍 氢电池,其端电压在恒流放电起始阶段下降缓慢,只是在电池电量接近放尽的时候,电池端电压才开始大幅度地下降。在放电过程中,镍氢电池内阻几乎维持在一定 值附近,变化很小,只是在放电接近完毕时,电池内阻才急剧增大,且时间很短,说明镍氢电池具有较高的放电效率。

系统概述

系统简介

    本系统具有蓄电池巡回检测功能,可在蓄电池充、放电过程中在线检测蓄电池端电压、充放电电流和蓄电池温度,能根据检测到的电流计算剩余安时数,并按要求显示出来,另外,本系统还具有故障预测功能。其结构框图如图1所示。

主要技术参数

    本系统拟达到的技术指标如下:

(1)要求1s采集并处理一个数据。
(2) 最多可检测45路12V的蓄电池单体电压,1路电流和2路温度等参数。电压测量精度1%,温度测量精度5%,电流测量精度1%。
(3) 系统的工作环境温度为0℃~40℃。
4) 系统显示采用串行口通信,单片机电路有数据掉电保护、电源检测等功能。

系统的硬件结构

    本系统由三个大的模块构成:主电路模块、电压采集扩展模块和显示模块。

    主电路模块是系统的核心部分,其中包括由单片机小系统、A/D转换器、信号调理电路、逻辑控制电路、电源电压监视电路和EEPROM电路构成的信号处理和 存储电路,集成在主电路上的20路电压采集子电路、主电路模块以及主电路模块和另外两个模块的接口,具体框图如图2所示。

    电压采集扩展模块由25路电压采集子电路构成,集成有电池电压输入插座。电路板做成插板形式,需要扩展的时候即可以插到主电路上的插槽上。

    显示模块由7个数码管显示器、三个按键及两个报警电路构成。

    几种常用的电压数据采集电路方案的比较如表1所示。由于电池经过逆变器或者斩波器为电机供电,电磁干扰比较严重,因此应采用抗干扰能力强的数据采集电路。 利用光电耦合器件组成的电压数据采集电路方案费用低、体积小、精度满足系统要求并具有很强的抗干扰能力,因此,本系统采用了这种电压数据采集电路方案,原 理框图如图3所示。

     在电流检测电路中采用了LEM公司的霍尔电流传感器LT208-S7;温度采集电路中采用的是集成温度传感器LM35;采样保持和A/D转换电路由快速逐次比较的12位A/D转换器AD1674构成。

系统的软件设计

    本系统采用模块化的程序设计方案,各模块子程序之间相对独立,整个系统软件结构清晰、便于扩展。这些子程序包括:系统初始化子程序、A/D转换子程序、滤波及运算子程序、LED显示子程序和外部中断子程序。主程序的流程图如图4所示。

    针对存在的干扰,可以采用软件方法实现数字滤波,以提高信号的可靠性,减少虚假信息的影响。

    针对电量计量的算法,目前国际上大致有两种方法:(1)将测量开路电压、负载电压、内阻、电量中的几种方法结合起来,再对温度、老化等因素进行补偿,如内 阻-安时法,Peukert-安时法;(2)采用更为复杂的模型,如TNO模型、Shepard模型和Martin模型的组合模型。这两类方法各有利弊: 前者方法简单,计算量少,对硬件要求相对较低,但精度差一些;后者精度高些,但方法复杂,计算量大,对硬件要求较高。

    本系统采用的算法是一种把开路电压法、安时法和Peukert方程有机地结合起来的算法。使用开路电压法,是考虑到开路电压与初始电量有一个明确的关系, 可以通过实测来确定;而安时法用来计算已用电量比较准确,而且适用于充电和放电两种情况。这种方法比复杂模型的运算量少得多,对于硬件特别是CPU的要求 不很高,便于实时完成。

     开机时,根据开路电压U0来确定初始电量CtI:,其中a,b是常量。每秒进行一次采样,获取电压、电流、温度,用积分法计算已用电量Cu:。初始电量CtI减去Cu就是剩余电量:Cr(t)=CtI-Cu(t)。

     此算法有一个前提条件,就是开机前电池须已经静置一段时间,测量结果才较准确。
 剩余电量受到诸多因素的影响,主要有放电电流对电池容量的影响,以及温度、循环使用次数对容量的影响,都需要定量地加以补偿或修正。

提高系统可靠性的措施

    (1) 软件抗干扰措施。软件抗干扰是以牺牲少量的运行速度和程序空间来达到抗干扰目的的方法。本系统中采用了指令冗余、设置软件陷阱以及数据冗余技术等软件抗干扰措施。

    (2) 硬件抗干扰措施。输入通道采用了光电耦合器件使蓄电池电压的变化引起的干扰较小,同时在信号处理电路中构造了二阶低通有源滤波器,可以滤出一部分干扰波。单片机连有一片电源监视芯片WATCHDOG,在监视电源电压的同时,还可以防止程序跑飞或者进入死循环。

    (3) 数据指针的妥善处理。当前数据存放的地址(数据指针)是系统中非常重要的信息,指针丢失或错误将导致数据的丢失和误读。为了保证指针的正确,本设计中采用 多指针和严格校验策略:即存放多个指针,在每次存储指针时进行严格校验,而当多次写入出错时,封锁此处RAM;在每次应用之前,随机读出其中几个指针,采 取表决的办法决定正确值,若表决没有形成多数,则读取全部指针再次表决,若仍未成功,则给出显示,同时系统重新初始化。

结语

  本文完整地分析和探讨了蓄电池组管理及电量计量系统的设计和实现。系统以ATMEL单片机为核心,充分开发和利用了单片机的I/O资源。系统的总体设计采 用积木式结构,便于测量路数的扩展。本系统能够较为准确地计算剩余电量,并为进一步的研究工作提供了一个实验平台,能够适应将来可能使用的各种计算方法。

关键字:电动汽车  蓄电池  电量计量  单片机 引用地址:基于单片机的EV动力蓄电池组电量计量系统

上一篇:恩智浦推出集成CAN收发器的微控制器解决方案
下一篇:基于ATmega8的电动车蓄电池智能管理系统设计

推荐阅读最新更新时间:2024-03-16 12:31

PIC单片机端口RB中断的程序设计
在本例中采用了模块化的编程方法,程序的规划、编写、拼装、调试、修改、   程序流程如图1~图7所示。   图1 主程序流程   图2 中断服务子程序流程   图3 低发音子程序流程   图4 高发音子程序流程   图5 高声1s子程序流程   图6 3声发音子程序流程   图7 延时1s子程序流程   程序的模块化设计是较常用的编程方式,这可以给阅读和交流带来便利。   (1)定义端口及寄存器地址。   (2)定义复位向量和中断向量。   (3)主程序。   (4)INT中断处理函数。   (5)R13中断处理函数。   (6)低音调发声子
[单片机]
PIC<font color='red'>单片机</font>端口RB中断的程序设计
基于DSP的蓄电池充放电装置的设计
摘 要:介绍了一种利用TMS320LF2407来进行全数字控制,采用Buck—Boost双象限电路作为充放电主电路的蓄电池充放电装置。采用了涓流充电、恒流充电、恒压充电的三级充电模式,非同步采样方法,带滞环的PI调节器。样机试验结果表明控制方法可行,充放电精度高。 关键词:蓄电池;充电;放电;DSP;Buck-B00st;数字控制 0 引言 蓄电池作为储能电源已广泛用于各个行业中。蓄电池充电装置大多采用两级充电模式,同步采样方法,用不带滞环的PI调节器进行PI调节。对于深度放电的蓄电池,为保证正常的使用寿命,在一般的充电程序前必须增加涓流充电过程。同步采样方法存在开关管动作引起的电压和电流尖峰,从而导致系统运行不稳定。本装置采
[嵌入式]
深度解析电动汽车的组成结构
未来节能环保成为了汽车发展的趋势,纯电动汽车是新能源汽车重要的发展方向,与传统燃油汽车相比,纯电动汽车最大的变化是动力装置,也就是传统汽车的发动机。 动力装置的作用是其它形式的能量转化为机械能,例如:汽油发动机就是把储存在油箱里的汽油送到气缸中燃烧,并把燃烧产生的热能转化为机械能。而纯电动汽车是把储存在电池包里的电能送到电动机,并把电能转化为机械能。 因此,有人将纯电动汽车的动力系统分为三个部分:电池系统——储存能量,电机系统——转化能量,电控系统——控制能量。电池系统中最重要的是安装在汽车底部的电池包,电池包内部由很多个电池模组通过串联构成,能够产生很高电压。 由于电池包安装在汽车底部,因此车主是看不到的,电能就是从
[嵌入式]
51单片机C编程(十五 74HC595控制四位数码管)
#include reg51.h #include intrins.h #define uchar unsigned char #define uint unsigned int uchar code DAT ={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x02,0xf8,0x00,0x10}; sbit SDATA_595=P1^0; //串行数据输入 sbit SCLK_595=P1^1; //移位时钟脉冲 sbit RCK_595=P1^2; //输出锁存器控制脉冲 sbit P20=P2^0; sbit P21=P2^1; sbit P22=P2^2; sbit P23=P2^
[单片机]
用68HC908GP32单片机实现EPP增强并口的接口技术
摘要:本文介绍了计算机并口的几种操作模式,给出了实现EPP接口设计的几种方案;着重介绍用Motorola公司的68HC908GP32单片机实现EPP接口设计,并给出了一个GP32单片机实现的数据采集系统的设计方案。 关键词:EPP 增强并口 单片机 68HC908GP32 一、计算机并口操作模式概述 1.SPP模式 SPP(Standard Parallel Port)模式即标准并口模式,是为打印输出而设计的。数据由计算机单向输出,不能用数据线进行数据输入,要做数据输入只能利用状态线。并口状态线只有5根,所以每个字节要分两次输入,再拼装为一个完整的字节。SPP模式速度较低,对硬件的要求不高,适用于低速的应用场合,如打印机、
[单片机]
德州仪器MCU加速控制系统并提高集成度
您是否需要一种可让系统性能迅速倍增却无需双倍成本和改变软硬件设计的微控制器(MCU)?德州仪器(TI)全新C2000™ Piccolo™ F2807x MCU采用C28x CPU与加速器的强大组合,可在电信整流器、服务器电源、太阳能微型逆变器、变频器和混合动力汽车/电动汽车(HEV/EV)等工业应用中提升控制任务的执行速度。此外,F2807x MCU还可提供众多模拟与控制外设,从而实现集成度更高的控制应用。它们具有可扩展性,支持此前推出的C2000 Delfino™ F2837xS和F2837xD MCU系列。 实时控制加速器(CLA) 令系统性能倍增 设计人员希望充分发挥C2000 Piccolo F2807x MCU性能
[单片机]
凯迪拉克现在弄出了它的第一款纯电动汽车
凯迪拉克 现在弄出了它的第一款纯电动汽车,如下图所示,应该说是把电池系统和整车轴距配置的想法展示了出来。这款车和整个BEV3系列,基本上和Volt代表的HEV/PHEV系列做了一次隔离,在BEV2上面做了更彻底的演进,从之前单个车型做电池系统,演变成一个系列的解决方案。 如下图所示,摘出来,我们可以看到考虑7人的车辆,采用了一块非常平板化的电池,电池的高度是被限制在一定的范围内的。 如下图所示,整个框架也从钣金切换到铝合金的低边沿下壳体,配一个轻量化的上盖。(整车的续航应该考虑在300英里,在国内可能按照WLTC要超过500公里) 这是SAV(4-5个乘员)和较小的车辆的情况,把轴距缩短电池缩短
[嵌入式]
凯迪拉克现在弄出了它的第一款纯<font color='red'>电动汽车</font>
AD574与8031单片机及前置电路的一种实用接口电路
  AD574是美国核拟器件公司Analog Devices) 生产的12 位逐次逼近型快速A/D 转换器。其转换35us,转换误差为土0.05%,是前我国应用广泛,价格适中的A/D转换器。其内部含三态电路,可直接与各种微处理器连接,且无须附加逻辑接口电路,便能与CMOS 及TTL 电平兼容。内部配置的高精度参考电压源和时钟电路,使它不需要任何外部电路和时钟信号,就能实现A/D转换功能,应用非常方便。   许多文献有关于AD574与8031单片机接口技术的介绍, 但其控制功能引线基本局限于单一的AD574与8031的连接。由于8031无内部程序存贮器, 其内部数据存贮器也有限, 因而8031构成的测控系统, 往往都需外扩存贮器
[单片机]
AD574与8031<font color='red'>单片机</font>及前置电路的一种实用接口电路
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved