基于凌阳16位单片机的智能车设计

发布者:才富五车330最新更新时间:2011-08-27 关键字:凌阳16位单片机  智能车设计 手机看文章 扫描二维码
随时随地手机看文章

  引言

  轮式小车是智能小车机械结构的主体部分,由车身、轮子、变速器、传动轴等结构部件构成。轮式小车还包括提供动力的驱动器,用来收集智能小车的自身状态信息或外部环境信息,并对多传感器的数据进行分析、融合,动态调整小车的运动状态,实现在一定条件下的自主行驶。

  硬件设计

  图1是智能车总体的设计方案及组成原理。微处理器采用了16位SPCE061A单片机,以此为核心设计了红外传感模块、电机驱动模块、PI控制器及相关的显示指示模块。

  

智能车总体的设计方案

 

  图1 智能车总体的设计方案

  轮式小车机械结构的设计

  智能小车机械结构包括车轮、车身、转向舵机、驱动器和各种传动机构等。小车车身主体由2mm厚的有机玻璃组成。小车有三个车轮,其中后面的两轮为驱动轮,分别有独立的直流电机驱动。

  若直接将直流电机输出轴连接小车的轮胎,会出现电机的转矩偏小、小车的动力差等缺点,采用PWM直流电机调速方法又会使电机的输出转矩在原有压降的基础上又有所下降。为了解决转矩速度之间的矛盾,笔者设计了二级定轴轮系转动减速装置,其结构示意图如图2所示。

  

减速机构原理图

 

  图2 减速机构原理图

  其中齿轮均为圆柱直齿轮。若主动轴用1表示,末轮以K表示,轮速为ω,圆柱直齿轮啮合次数为m,则上述轮系机构的传动比ilk为

  

(1)

 

  此处电机输出轴是主动轴,车体轮胎是从动轴。

  其中一级变速主动轮齿数Z1主=11,从动轮齿数Z1从=35;二级变速主动轮齿数Z2主=11,从动轮齿数Z2从=40;圆柱直齿轮啮合次数为m=2。可以计算出ilk=11.5。[page]

红外传感器

  红外传感电路采用反射式红外传感器,可以方便地实现实时监控并有效防止误触发,灵敏度容易控制。图3为红外检测电路,核心IC器件是LM393,该集成块内部装有两个独立的电压比较器。

  

 红外检测电路

 

  图3 红外检测电路

  LM393类似于增益不可调的运算放大器。每个比较器有两个输入端和一个输出端。两个输入端一个称为同相输入端(用“+”表示),另一个称为反相输入端(用“-”表示)。用作比较两个电压时,任意一个输入端加一个固定电压做参考电压,另一端加一个待比较的信号电压。当“+”端电压高于“-”端时,输出管截止,相当于输出端开路。当“-”端电压高于“+”端时,输出管饱和,相当于输出端接低电位。两个输入端的电压差大于10mV就能确保输出能从一种状态可靠地转换到另一种状态。因此,把LM339用在弱信号检测等场合是比较理想的。测速反馈电路由发光二极管、光电级管、单稳态电路以及装在主轴上的光电码盘组成。当光码盘上的孔经过发光二极管时,发光二极管发出的光使光电三极管导通,输出高电平;当光码盘上的非孔部分经过光二极管时,光电极管截止,输出低电平。产生的周期性脉冲经单稳电路整形送高速输入通道IOB2或IOB3外部中断源,取得每次上升沿的时间值, 就是定时器T1的值,每两次T1上升沿值之差为光电脉冲周期,从而可计算出主轴的转速。

  电机驱动电路

  微型直流电机以其良好的线性特性、优异的控制性能和非常高的效率广泛应用于小功率系统中。为了控制直流电机,本文采用PWM控制。SPCE064A的I/OB特殊功能IOB8 、IOB9就直接提供了两个PWM输出口,直接输出控制信号即可,无须另加电路。考虑到电压、电流的等级及尺寸、外观因素,本文采用L298代替三极管构成驱动电路,如图4所示。

  

直流电机驱动电路

 

  图4 直流电机驱动电路

  L298可同时控制两个电机,且输出电流达到2A。其ENA(引脚6)和ENB(引脚11)分别于SPCE064A的IOB8和IOB9相连,可实现直流电机的PWM速度控制。SENSEA、SENSEB为电流反馈引脚,用于实现直流电机的内环电流闭环控制。

[page]

控制器

  常规的智能车一般引入输出电机的转速作为负反馈行程单闭环调速系统。虽然这个闭环具有较强的抗干扰性能,转速调节器采用常规PI调节器,但是在系统中静差仍然存在,即在PI控制调节器下稳态误差只能减少而不可能消除。因此,单闭环调速系统控制效果和性能对给定稳压源和速度检测元件的精度具有依赖性。

  直流电机在全压启动时会产生很大的冲击电流,这对电机的换向不利,实际中表现为小车在变向或倒车时控制不及时,有较大的延迟时间。引入自动限制电枢电流的电流环负反馈对解决此问题是有效的。为了使转速和电流两种负反馈分别起作用,在系统中设置两个调节器, 分别调节转速和电流。二者之间串级联接。把转速调节器的输出当作电流调节器的输入。从闭环结构上看,电流环在里面,转速环在外面,形成了转速、电流双闭环调速系统,如图5所示。

  

转速电流双闭环调速系统

 

  图5 转速电流双闭环调速系统

  其中,β为电流反馈系数,n为转速, α为转速反馈系数。ASR为转速比例积分调节器,用来实现转速无静差。ACR为电流比例积分调节器,用来实现电流无静差。当两个调节器都不饱和时,双闭环调速系统在稳态工作点上,PI调节器的稳态输出量与输入量无关。

[page]

软件程序设计

  软件程序由主程序、寻迹模块程序、避障模块程序、避障语音播报程序和LED显示车体转向程序等几部分组成。图6、图7即为主程序和寻迹程序流程。

  

主程序流程

寻迹程序流程

 

  图6 主程序流程图 图7 寻迹程序流程图

  PWM算法的实现

  凌阳SPCE061A单片机提供了两个16位定时器,分别有相应的定时器控制寄存器设计相关参数,P_TimerA_Ctrl(700BH)和P_TimerB_Ctrl(700DH)的第6~9位设置该定时器输出不同频率的脉宽调制信号。

  智能车实地调试

  小车的实际调试是让小车运行在一个指定或任意给定的由纸板构成的迷宫通道,通道设有两个进出入口。开始测试时将小车放置在入口处并打开小车电源,小车可以顺利地在迷宫内实现躲避障碍,最后从迷宫的另一个出口出来。循迹的测试是在一张空旷的贴有一定黑线轨迹的桌子上进行,测试结果显示,小车可以按照比赛的要求进行循迹、转向和避悬崖。

  结语

  本次设计的智能车是机电一体化的综合产品。循迹模块能实现寻黑线车体的自由运转。小车可以顺利地完成拐直角弯道或者掉头返回(180°转弯)等操作。

 

 

 

 

关键字:凌阳16位单片机  智能车设计 引用地址:基于凌阳16位单片机的智能车设计

上一篇:基于MC9S08SC4芯片的汽车方向盘按键控制器设计
下一篇:基于处理器的汽车发动机点火线圈测试系统

推荐阅读最新更新时间:2024-03-16 12:40

浅析LabVIEW的智能车仿真系统应用设计案例
本 仿真 系统基于LabVIEW虚拟仪器技术开发完成,用于智能车的算法仿真及分析。 1 基本构架 图1是整个 仿真 系统的构架图,主要分为基本模型层、控制算法层、通讯层以及仿真环境层。 基本模型层包括赛车模型与赛道模型,使用者可根据实际情况设定模型参数,它为整个系统提供了底层的驱动,仿真结果都是在这两个模型的基础上计算的。 图1 仿真系统构架图 控制算法层为使用者提供了3种不同的仿真方案:SubVI、C结点以及单片机在线仿真,具体在后文将会详述。使用者可选择其中一个方案输入或移植自己的控制算法。 通讯层只用于单片机的在线仿真,使用CAN模块,可以使单片机与 仿真 系统进行即时的数据交流,从而实现动态仿真。 动态仿真环境基于
[电源管理]
浅析LabVIEW的<font color='red'>智能车</font>仿真系统应用<font color='red'>设计</font>案例
低成本光电寻迹智能车设计与实现
  智能车竞速比赛以及多种智能车的应用场合中,需要智能车沿着某条轨迹快速前进,使用普通红外传感器、激光传感器、摄像头识别均可有效提取路面轨道信息而解决这一问题,现在常见使用16位单片机作为控制核心。普通红外传感器因为易受干扰、前瞻距离短等缺点已经较少使用,摄像头有丰富的数据信息,但是低成本8位单片机不能很好的处理这些信息。激光传感器成本适中,处理的信号便于8位单片机处理,能够有效的节省硬件成本。针对寻迹智能车进行了软硬件设计,采用3位freescale单片机MC9S08AC16作为控制核心,使用激光传感器提取赛道信息,采用低成本的红外测速方案,算法使用以PID为基础的枚举查表法,做到了处理快速高效。整个设计既满足了竞速小车的响应迅
[电源管理]
低成本光电寻迹<font color='red'>智能车</font><font color='red'>设计</font>与实现
基于WinCE的智能车载仪表设计
  引言   随着高性能电子显示技术的发展,汽车仪表电子化的程度越来越高。国内外已开发出了多功能全电子显示仪表、平视显示仪表、汽车导航系统、行车记录仪等高技术产品。未来,车用电子化嵌入式仪表具有以下优点:提供大量复杂的信息,使汽车的电子控制程度越来越高;满足小型、轻量化的要求,使有限的驾驶空间更人性化;高精度和高可靠性实现汽车仪表的电子化,降低了故障的发生率;设有在线故障诊断系统,一旦汽车发生故障,可以找到故障来源,方便维修;外形设计自由度高,汽车仪表盘造型美观。基于以上优点,汽车会越来越多地采用各种用途的电子化仪表。造型新颖、功能强大的嵌入式电子化仪表将是今后车用仪表的发展趋势和潮流。   1 智能车载仪表系统结构   本智
[单片机]
基于WinCE的<font color='red'>智能车</font>载仪表<font color='red'>设计</font>
低成本光电寻迹智能车设计与实现
  智能车竞速比赛以及多种智能车的应用场合中,需要智能车沿着某条轨迹快速前进,使用普通红外传感器、激光传感器、摄像头识别均可有效提取路面轨道信息而解决这一问题,现在常见使用16位单片机作为控制核心。普通红外传感器因为易受干扰、前瞻距离短等缺点已经较少使用,摄像头有丰富的数据信息,但是低成本8位单片机不能很好的处理这些信息。激光传感器成本适中,处理的信号便于8位单片机处理,能够有效的节省硬件成本。针对寻迹智能车进行了软硬件设计,采用3位freescale单片机MC9S08AC16作为控制核心,使用激光传感器提取赛道信息,采用低成本的红外测速方案,算法使用以PID为基础的枚举查表法,做到了处理快速高效。整个设计既满足了竞速小车的响应迅
[单片机]
低成本光电寻迹<font color='red'>智能车</font><font color='red'>设计</font>与实现
智能车运动状态实时监测系统的设计及实现
系统功能及应用 本系统主要完成将智能车行驶过程中的各种状态信息(如传感器亮灭,车速,舵机转角,电池电量等)实时地以无线串行通信方式发送至上位机处理,并绘制各部分状态值关于时间的曲线。有了这些曲线就不难看出智能车在赛道各个位置的状态,各种控制参数的优劣便一目了然了。尤为重要的是对于电机控制PID参数的选取,通过速度—时间曲线可以很容易发现各套PID参数之间的差异。对于采用CCD 传感器的队伍来说,该系统便成为了调试者的眼睛,可以见智能车之所见,相信对编写循线算法有很大帮助。而且还可以对这些数据作进一步处理,例如求取一阶导数,以得到更多的信息。 系统的硬、软件设计 设计方案主要分成三部分:车载数据采集系统,无线数传系统,上位机数据
[单片机]
<font color='red'>智能车</font>运动状态实时监测系统的<font color='red'>设计</font>及实现
基于电磁场检测的寻迹智能车系统设计
    1 设计原理     1.1 磁场理论     根据麦克斯韦电磁场理论,交变电流会在周围产生交变的电磁场。智能车竞赛使用路径导航的交流电流频率为20 kHz,产生的电磁波属于甚低频(VLF)电磁波。交变磁场分析复杂,并且赛道导航电线和小车尺寸远远小于电磁波的波长,电磁场辐射能量很小,能够感应到电磁波的能量也非常小。所以可将导线周围变化的磁场近似地看作缓变的磁场,按检测静态磁场的方法获取导线周围的磁场分布,进行位置检测。     由毕奥一萨伐尔定律可知,通有稳恒电流I、长度为L的直导线周围会产生磁场,距离导线距离为r处的磁感应强度为:         1.2 寻迹原理     基于不同物理效应的磁测量传感器很多,要根
[电源管理]
基于电磁场检测的寻迹<font color='red'>智能车</font>系统<font color='red'>设计</font>
凌阳16位单片机之IRQ4中断
IRQ4中断是由 b4 b5 b5三位来控制的 实现功能:利用IRQ4三个时基中断,即IRQ4_1kHz、IRQ4_2kHz和IRQ4_4kHz中断,在各自的中断服务程序中对相应的变量进行累加;并通过点亮、熄灭发光二极管来表示相应变量计数器累加的速度; 实验现象:D4和D5的亮灭周期为2s,D6和D7的亮灭周期为1s,D8~D11的亮灭周期为0.5s。 这个需要有一个变量来计数, #include SPCE061A.H #define sec2 0x0003 //宏定义,低八位的低两个口 #define sec1 0x000c #define sec5 0x00f0 unsigned int
[单片机]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved