DDS+MCU实现运算放大器参数测量系统

发布者:数据梦想最新更新时间:2011-09-20 关键字:DDS+MCU  运算放大器  参数测量 手机看文章 扫描二维码
随时随地手机看文章

  引言

  为了方便用户准确掌握手中运放的各项参数,本文提供了一种采用可编程DDS芯片和MCU的测量系统,可自动测量集成运放的5项基本参数,以小液晶屏显示测量结果,并可根据需要打印测量的结果,与现有的BJ3195等昂贵测试仪相比,该测量系统功能精简、操作智能化、人机接口友好。

  系统总体设计

  系统框图如图1所示。系统以SPCE061单片机为控制核心,采用主从结构,从单片机负责外围的液晶显示、打印、语音提示等功能。主单片机负责接收红外键盘的输入信息,根据当前用户输入,将参数测试部分以及自动量程切换部分设置到合适的状态,然后对测量结果进行读取,并通知从机对测量结果进行显示或打印。系统的DDS扫频信号源,可以通过红外键盘设置输出4MHz以内的任意频率以及任意频率段任意步进的正弦信号。为了提 高测量精度,系统另配了一套标准运放参数测量电路,对系统进行初始校准。

  

运算放大器参数测量系统框图

 

  测量功能电路结构

  SPCE061简介

  SPCE061是凌阳科技股份有限公司推出的16位MCU,最高工作频率可达49MHz,内置32KB的ROM以及2KB的RAM,具有红外通信接口和异步全双工串行接口。另外,SPCE061提供非常方便的开发平台和音频编解码工具,使得SPCE系列单片机不仅控制功能强大、开发周期短,且易于实现主从机架构。

  测量主电路

  测量运放参数的电路如图2所示,该电路系统传递函数中引入了两个放大环节,因此存在两个或者两个以上的极点,由奈奎斯特稳定性判据,对于闭环反馈系统,若有极点分布在频域右半平面,在深度负反馈测试时会产生自激振荡,导致无法正常测试。因此,本系统改进了该电路,在反馈回路中加入560pF电容与RF并联,补偿信号的相位,改变整个反馈通道的幅频特性,增加其相角裕度,经测试,闭环回路工作稳定性大幅提高。

  

测量运放参数的电路

 

  图2中,S1、S2、S3、S4均为继电器,由SPCE061控制其导通与关断,从而实现VIO、IIO、AVD、KCMR、BWG的自动测量,其中BWG由继电器切换到另一路扫频仪单独测量。

  根据式(1)、(2)、(3)、(4)可计算出VIO、IIO、AVD、KCMR:

  

 

  程控放大电路

  由于被测参数都是mV级电压,应对辅助运放闭合环路的输出信号分两档测量,在自动测量时,这两档的切换由MCU控制,因此需设计程控放大电路。本设计采用仪用放大器AD620,通过S5、S6改变其反馈电阻,以控制增益。由于仪用放大器为差模输入,且输人为5Hz的低频信号,为抑制工频干扰,在AD620的输入级滤波,采用二阶有源滤波电路,考虑其通带平坦度,采用二阶巴特沃兹低通滤波器,截止频率设为20Hz。

   [page]

单位增益带宽测量电路

  在输入端输入恒定幅度交流正弦信号,改变信号频率,对应于电路输出端电压下降3dB时的频率即为单位增益带宽。为提高测量效率,本设计将单位增益带宽测量电路与其他参数测试电路隔离开,用继电器进行切换控制。单位增益带宽与输入信号幅度紧密相关,当输入信号较大时,单位带宽变窄,测量结果误差较大。系统中采用宽带运放对输入信号进行衰减,然后通过测试运放,再用宽带运放对测试运放的输出信号进行放大,以提高测量精度。宽带运放选甩AD811,其单位增益带宽为140MHz。

  DDS扫频信号源

  AD9851是一款数字频率合成芯片,其最高工作频率为180MHz,AD9851的最大输出频率为系统时钟的40%时杂散频率小,它有40位控制字,其中5位为相位控制,1位为6倍参考时钟倍乘器开关控制,32位为频率控制。当外接20MHz时钟源,6倍频开启后系统时钟Fsysclk=120MHz, 设频率控制字为Fcw,则输出频率由式

  

 

  由于AD9851输出信号峰峰值为1V,而在测量BWG时使用有效值为2V的正弦信号较准确,须放大5.656倍,设计扫频信号源的最高输出频率为4MHz,则要求反相放大器的增益带宽积GBW≥5.656×4MHz=22.624MHz,系统中采用GBW为50MHz的高速运放AD817。

  软件算法与流程 单位增益带宽测量的软件算法

  系统设计扫频范围为100KHz~3.5MHz,频率分辨率为1KHz,要求自动测量总时间≤10s。因此,从100KHz到3.5MHz最少应该扫描 (3500-100)/1=3400次,每次最多使用的时间为:1 0/3400=0.0029s,而在这0.0029s内要完成频率设置、读取A/D转换结果等。高精度A/D转换时间一般较长,加上设置扫描频率的耗时,所以传统的全频段步进扫描会有较大的

  系统时延。针对单位增益带宽的特点,本设计采用二分查找算法,不断缩小扫频范围,在较小的频段内步进扫描,只需扫捕几十个频点即可在1 KHz的分辨率下满足测量时间≤l0s的要求。

  系统误差概述

  系统测试表明,VIO、IIO、AVD测量精度主要取决于集成运放输入电阻、反馈电阻的精度,保证运放的两个输入端口外接等效电阻平衡可减小测量误差。 KCMR的测量误差主要是由于外界的电磁干扰、电源纹波、工频干扰、传输网络不对称,以及地电位不统一引起的串模干扰。通过单点接地、低通滤波、电源滤波,以及选取精度高的电阻可减小KCMR的测量误差。

  结语

  测试结果表明该系统能够智能化地测量集成运放的5项参数,切换灵敏、时延小,测量精度较以往的测量方法更为精确,具有较高的性价比。本文提供的设计方法对于常规测量仪表的设计也具有一定的参考价值。

 

关键字:DDS+MCU  运算放大器  参数测量 引用地址:DDS+MCU实现运算放大器参数测量系统

上一篇:基于单片机的电力三相不对称负载无功补偿算法的实现
下一篇:定时器T1中断实验

推荐阅读最新更新时间:2024-03-16 12:41

运算放大器的简易测量
运算放大器是差分输入、单端输出的极高增益放大器,常用于高精度模拟电路,因此必须精确测量其性能。但在开环测量中,其开环增益可能高达107或更高,而拾取、杂散电流或塞贝克(热电偶)效应可能会在放大器输入端产生非常小的电压,这样误差将难以避免。   通过使用伺服环路,可以大大简化测量过程,强制放大器输入调零,使得待测放大器能够测量自身的误差。图1显示了一个运用该原理的多功能电路,它利用一个辅助运放作为积分器,来建立一个具有极高直流开环增益的稳定环路。开关为执行下面所述的各种测试提供了便利。 图1. 基本运算放大器测量电路   图1所示电路能够将大部分测量误差降至最低,支持精确测量大量直流和少量交流参数。附加的“辅助”运算放大器无需
[工业控制]
<font color='red'>运算放大器</font>的简易<font color='red'>测量</font>
C-V测量技术、技巧与陷阱—— C-V测量参数提取的局限性
在探讨C-V测试系统的配置方法之前,了解半导体C-V测量技术 的局限性是很重要的: 电容:从 10fF到1微法 电阻:从 0.1欧姆到100M欧姆 小电感:从 1nH到10mH 栅介质:可以提取的等价栅氧厚度范围从不到10纳米到几百纳米。可以检测出的电介质玷污浓度从每平方厘米5e9个离子到约1e13个离子,界面阱范围从约1e10/cm2/ev到1e13/cm2电荷左右(取决于器件结构)。现代仪器和探针台的超低电容测量功能能够测量更厚的叠层电介质。 MOS掺杂:可以提取MOSFET的掺杂分布情况,灵敏度范围从约1e14/cm3 到1e18/cm3,掺杂深度从0.01 m到10 m。少数
[测试测量]
运算放大器组成的简单锁相环电路图
运算放大器组成的简单锁相环电路图
[模拟电子]
<font color='red'>运算放大器</font>组成的简单锁相环电路图
技术文章—采用“系列优先”的方法进行运算放大器设计
当我第一次光顾德克萨斯的一家烧烤店时,菜单上各式各样的肉让我感到非常惊讶,以至于我不知道要选哪一种。但幸运的是,烧烤店提供了三种肉的拼盘,因而我可以尝一下不同种类的肉。 其实,作为一个寻求运算放大器(op amp)的设计工程师,您也可以有很多选择。另外,随着如今生产周期不断缩短,您需要快速做出决定。选择了错误的运算放大器可能会耗费时间和金钱。 TI丰富的产品组合由48个独特的放大器组成(包括新的TLV9001、TLV9052、TLV9064),提供了16种不同的封装,其中包括业内最小的单通道和四通道封装。在此技术文章中,您将了解到此新的运算放大器系列如何满足各种项目需要,减少印刷电路板(PCB)的空间,并提供多种带宽选项,
[模拟电子]
技术文章—采用“系列优先”的方法进行<font color='red'>运算放大器</font>设计
运算放大器构成的正、负稳压电源电路图
用运算放大器构成的正、负稳压电源电路图
[模拟电子]
用<font color='red'>运算放大器</font>构成的正、负稳压电源电路图
东芝推出具有业界领先低噪音水平的CMOS运算放大器
东京--东芝公司(TOKYO:6502)旗下存储与电子元器件解决方案公司今日宣布推出实现业界领先 低噪音水平的新运算放大器“TC75S67TU”。样品发货即日启动,量产计划于8月启动。 随着物联网市场的不断扩张,市场对用于放大传感器 检测到的小信号的低噪音运算放大器的需求日益增长。东芝的新IC对工艺进行了优化,实现了业界领先的低等效输入噪声电压,适合于传感器模拟前端(AFE)电路。而且,该新IC采用CMOS工艺,实现了低偏置电流,有助于延长 小型物联网设备电池的工作时间。 应用场合 • 放大各种类型传感器的小信号 • 物联网模块、硬盘驱动器、传感器模块、笔记本电脑、家用电器 特点 • 低等效输入噪声电压: VNI=16nV/
[模拟电子]
东芝推出具有业界领先低噪音水平的CMOS<font color='red'>运算放大器</font>
电压表接线图,技术参数测量范围
电压表是一种测量电压的仪器电压表,安装在电力、电信、电子设备面板上使用的仪表,用来测量交、直流电路中的电压。电压表是个大的电阻器,理想的认为是断路。下面小编来为大家介绍电压表接线图、测量范围、技术参数、结构、分类、读数方法、用电压表判断电路故障的方法、日常维护。 在并联电路中并联了电压表(跟别的用电器并联)和用电器,如果在干路中没有其他的用电器,可以认为测量电源电压(因为并联电路上的用电器全部享用了电源的电压);如果干路中还连接其他的用电器,那这个用电器就分享了部分电源电压,那电压表测的只能是部分电压。对于电压表,你是否想要了解更多呢? 电压表接线图 传统的指针式电压表包括一个灵敏电流计,在灵敏电流计里面有一个永磁体,
[测试测量]
电压表接线图,技术<font color='red'>参数</font>与<font color='red'>测量</font>范围
电子基础(2):运算放大器是否可以用作比较器
运算放大器和比较器乍看似乎可以互换,实际上,两者还是存在一些重要差异。比较器用于开环系统,旨在从其输出端驱动逻辑电路,以及在高速条件下工作,通常比较稳定。运算放大器的用途不同于比较器,过驱时可能会饱和,使得恢复速度相对较慢。施加较大差分电压时,很多运算放大器的输入级都会出现异常表现,实际上,运算放大器的差分输入电压范围通常存在限制。运算放大器输出也很少兼容逻辑电路。   但是仍有很多人试图将运算放大器用作比较器。这种做法在低速和低分辨率时或许可行,但是大多数情况下结果并不理想。单靠参考运算放大器数据手册不能解决将运算放大器用作比较器的所有相关问题,因为运算放大器设计的目的并非用作比较器。   最常见的问题是速度(之前已经提到过)、
[模拟电子]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved