基于单片机的等效采样示波器设计

发布者:Leishan最新更新时间:2011-11-29 关键字:单片机  等效采样  数字示波器 手机看文章 扫描二维码
随时随地手机看文章

  在数字示波器技术中,常用的采样方法有两种:实时采样和等效采样。实时采样通常是等时间间隔的,它的最高采样频率是奈奎斯特极限频率。等效采样(Equivalent Sampling)是指对多个信号周期连续样来复现一个信号波形,采样系统能以扩展的方式复现频率大大超过奈奎斯特极限频率的信号波形。

  1 总体设计

  由于所设计的示波器输入频率范围较宽,

  本系统采用了等效和实时两种采样方式。若输入频率小于1.25MHz,选用实时采样;反之,选用等效采样。根据输入频率确定时钟芯片的输出及分频数。当输入频率高于1kHz时,利用可编程频率合成芯片SY89429V产生基准时钟;当输入频率小于1kHz时,由单片机提供40kHz的基准时钟。然后根据输入频率的大小对基准时钟使用不同的分频数,从而产生采样时钟。

  2 硬件设计

  2.1总体设计

  本系统在硬件上可分为五部分:控制器、测频及键盘控制、波形采样、程控时钟和液晶模块。系统功能如图1所示。 [page]

(1)控制器 控制器部分任务较重,通过两片89C52(MCU1和MCU2)来完成。其中,MCU1负责采样、数据处理以及程序时钟和液晶的控制工作;MCU2完成测频、DAC输出和键盘接口处理功能。两单片机通过串口通信。

 (2)测频模块 本系统输入信号的频率范围较宽(1Hz~80MHz),隔度范围较大(0.1V~2.2V),整形电路采用高速比较器TL3016实现,其参考电压由MCU1对输入信号采样获得。整形后的信号经程控分频器送至MCU2测频,精度可达四位有效数字。   
  (3)波形采样模块 该模块由40MSPS的模数转换器TLC5540、静态存储器CY7C128A-20和可编程逻辑器件ispLSI1016E-80组成。 在程控时钟和程控分频器的控制下,CLPD产生存储器地址,将高速ADC的采样数据以程控频率写入静态RAM。写满256个点后,将静态RAM的控制权通过数据选择器转交给MCU1,由MCU1进行数据处理,并送液晶显示。 (4)程控时钟电路 程控时钟电路是本系统实现等效采样的关键,其核心是可编程频率合成芯片SY89429V。SY89429V的输出时钟范围是25MHz~400MHz,步进值0.125MHz~1MHz。它内部采用高频锁相环结构,对干扰很敏感,在硬件上采取了一定的抗干扰措施保证其稳定工作。 (5)液晶显示 液晶部分由点阵液晶显示器EDM160160、液晶控制器SED1335、SRAMHM62256、负压发生器和背光交流驱动电路发生器组成。 2.2 等效采样的实现 等效采样是本系统的关键和创新点。主要采用以芯片SY89429V为核心的精密时钟发生电路,控制高速ADC对高频信号进行循环间歇式采样。 实现等效采样的系统框图如图2所示。

 

  等效采样的输入频率是1.25MHz~80MHz。为了使复现的波形尽量精确,系统设计在1.25MHz~40MHz信号范围内每周期采一样一个点,在40MHz~80MHz信号范围内每个周期采一个点来复现波形。即采样频率范围要在1MHz~40MHz之间,并有可控的小步进值。 SY89429V的输出频率为25MHz~400MHz,需要外加分频电路将低低频部分扩展。同时,本系统选用的ADC为TLC5540,其转换速率是5MSPS~40MSPS,低端采样率会受到限制,可以采用控制RAM写入速度的方式来控制采样速率。综合考虑,采用CPLD器件,将SY89429V芯片TEST输出的FOUT频率经过程控二分频器,一方面提供给ADC作为CLK工作频率,另一方面再经过程控二五十进制分频器控制RAM写入速度,作为低端信号的采样频率。

[page]

  3 软件设计

  3.1 总体软件流程

  总体软件流程如图3所示。MCU1接收MCU2的测频结果,并将幅值信息传递给MCU2,由MCU1根据输入频率确定采样方式,并控制精密时钟发生电路为ADC提供采样时钟。一次采样完成后,由MCU1处理采样数据并送LCD显示。

  3.2 实时采样的实现

  实时采样中,为了使采样得到的波形尽量精确,系统将1.25MHz以下的信号分为三个频率范围,在每个频率范围内由程控时钟电器产生某一固定的基准时钟,结合相应的分频数进行采样。具体设置如睛:输入频率为1Hz~1kHz,由单片机提供40kHz采样时钟;输入频率为1kHz~1MHz,由芯片SY89429V提供40MHz采样时钟;输入频率为1MHz~1.25MHz,由芯片SY89429V提供50MHz采样时钟。

  3.3 等效采样的实现

  由于可编程频率合成芯片SY89429V在本系统所使用的25MHz~50MHz频率范围内,步进值始终为0.125MHz。为便于数据处理,软件设计过程中可以将所有的实际频率转换成以0.125MHz为单位的代值,即除以0.125MHz。 系统中所采用的模数转换器TLC5540的转换速率为5MHz~40MHz,当输入频率小于40MHz时,采用每个信号周期采一点的方法;当输入频率超过40MHz时,采用两个信号周期一点的方法。

  下面以输入频率在1.25MHz~40MHz之间的情况为例,输入频率大于40MHz的情况可以类推得到。 将输入频率fin转换后的代值(以后简称代值)记为dfin,根据输入频率设定芯片SY89429V的频率字SY(只取整数,用于控制输出信号的频率),经过n分频后产生采样频率。根据等效采样的原理,采样频率与输入频率相近(对于输入频率为40MHz~80MHz的情况,采样频率与输入频率的二分频接近),二者频率代值的差值记做da,则SY可以表示为: SY=(dfin-da) %26;#215;n

(1) 这时复现一个波形所需的采样点数为: d=(dfin-da)/da

(2) 本系统选用的液晶为160%26;#215;160点阵,将x轴上40个点所表示的时间定义为一格时基,记作A,则液晶屏幕上显示的周期个数为: N=160%26;#215;da/(dfin-da) (3) 由此,时基可以表示为: A=N/(4%26;#215;fin)=40%26;#215;da/[fin%26;#215;(dfin-da)]

(4) 一个波形的采样点数也可以用时基和输入频率来表示: d=40/(A%26;#215;fin)

(5) 笔者利用本文介绍的算法,实现了等效采样,能够地1MHz~80MHz的周期信号进行波形复现,效果令人满意。这种简易示波器在人机界面上为用户提供手动和自动两种工作模式,性价比高,有广阔的市场空间。

 

 

 

关键字:单片机  等效采样  数字示波器 引用地址:基于单片机的等效采样示波器设计

上一篇:基于Infineon单片机的CAN网关研究
下一篇:单片机的存储器数据绘图设计

推荐阅读最新更新时间:2024-03-16 12:47

提高PIC16C711单片机片内A/D分辨率的方法
摘要:介绍一种将PIC16C711片内8位A/D提高到11位的方法。此方法电路简单,速度快,可提高单片机应用系统的性能价格比,具有一定的推广价值。 关键词:PIC16C711 单片机 A/D 分辨率 目前,单片机中嵌入的A/D一般为8位到10位,难以满足信号处理应用中高分辨率的要求;而外接高分辨率的A/D将使成本明显提高,因为A/D转换器的价格将随其位数的增加而成倍增加。本文介绍一种提高PIC16C711单片机片内A/D分辨率的方法,将PIC16C711片内的8位A/D提高到11位。这种方法在PIC系列的其他单片机也适用。 美国Microchip公司推出的8位单片机PIC16C711是一种性能价格比很高的单片机。它价格低、封
[单片机]
加深对单片机的理解,单片机的指令执行过程详解
为了加深初学者对51单片机指令的理解,现在把指令执行的过程在此详细说明,希望对你有启发! 单片机执行程序的过程,实际上就是执行我们所编制程序的过程。即逐条指令的过程。计算机每执行一条指令都可分为三个阶段进行。即取指令-----分析指令-----执行指令。 取指令的任务是:根据程序计数器PC中的值从程序存储器读出现行指令,送到指令寄存器。 分析指令阶段的任务是:将指令寄存器中的指令操作码取出后进行译码,分析其指令性质。如指令要求操作数,则寻找操作数地址。 计算机执行程序的过程实际上就是逐条指令地重复上述操作过程,直至遇到停机指令可循环等待指令。一般计算机进行工作时,首先要通过外部设备把程序和数据通过输入接口电路和数据
[单片机]
ADVFC32与51系列单片机的硬件接口电路
ADVFC32与51系列单片机的硬件接口电路如图1所示。图中是输入电压信号为正时的情况。在输入信号为负时,只要把电阻R1、R3接地,从第14脚直接输入即可。AD650的电路与ADVFC32的外电路相似。关于这两种芯片的引脚排列及内部结构等请参考有关手册。      由图1可见,接口电路非常简单,只要把V/F变换器输出的频率信号直接送到单片机8031的定时器1的计数输入端T即可。其设计思想为:从传感器来的mV级电压信号经运算放大器放大到0~10 V的电压后,加到ADVFC32的输入端,从频率输出端,OUT输出的频率信号加到单片机8031定时器1的计数输入端Tl上。在单片机内部由定时器作计数器时,由定时器1对输入脉冲计数。定时器O的
[单片机]
ADVFC32与51系列<font color='red'>单片机</font>的硬件接口电路
基于单片机温度测量的标定方法
航空发动机燃气温度是表征航空发动机工作状态是否正常的最重要的参数之一,也是飞行员和维护人员必须掌握的重要参数,所以精确有效的检测温度至关重要。 在基于单片机的温度测量系统中,温度标定是一个重要的环节。本文在航空发动机温度检测电路的基础上,通过对不同标定方法的研究,提出了一种改进的温度标定方法,该方法利用上位机和下位机协同完成温度的标定。 1 硬件设计 热电偶是测量航空发动机燃气温度的常用温度传感器,其中K型热电偶由于线性好、热电动势较大、灵敏度高、稳定性好等优点,在航空发动机中得到了广泛应用。实验中使用毫伏源模拟热电偶产生的热电动势。 A/D转换电路采用高精度的AD7606芯片,其是16位、8通道同步采样模数数据采集系统,可处
[单片机]
基于<font color='red'>单片机</font>温度测量的标定方法
C8051F单片机中的ADC注意事项
  F020的片内有1个1.2V、15×10-6/℃的带隙电压基准发生器和1个两倍增益的输出缓冲器。2.4V的基准电压(VREF)可通过外引脚分别接入ADC0、ADC1和DAC中。VREF对外带载能力为200μA(建议在驱动外部负载时,对地接1个负载电阻)。ADC使用偏置时,必须将参考源控制寄存器REFxCN中的位1置于"1";如置于"0",则关闭内部偏压,此时可通过VREF引脚(引脚12)使用外部基准电压,外部基准电压必须小于VAV±0.3V(还要大于1V)。不用ADC,也不用DAC时,可将REFxCN的位0置"0",使缓冲放大器处于省电方式(输出为高阻态)。   设置REF0CN的位4为"0"时,ADC0用VREF偏置,为"
[单片机]
AT89S51单片机开发板的设计
1 引言 单片机系统传统的编程方式是将单片机先从电路板上取下,放入专用的编程器进行编程,再放人电路板进行调试。其缺点是频繁的拔插器件容易损坏器件的引脚;如果频繁的调试程序,必须重复拔插,大大降低了开发效率。ISP技术是未来发展的方向,其优势是无需编程器就可进行单片机的实验和开发,单片机器件可直接焊接到电路板上,调试结束即为成品,免去调试时由于频繁插入取出对器件和电路板造成的损坏和带来的不便。 ISP可降低研发成本;缩短从设计、制造到现场调试的时间,简化生产流程,大大提高工作效率;在试验新品或学生试验等常需用不同的程序调试器件的场合中,在线编程技术尤为重要。 设计AT89S51单片机开发板,采用ISP下载线实现在Keil C
[单片机]
AT89S51<font color='red'>单片机</font>开发板的设计
基于80C51单片机和CH375芯片实现打印机驱动系统的设计
引言 本课题来源于北京普析通用公司的一个项目。由于公司现有单机版光谱仪器产品(如1810、T6等)采用的是并行口打印技术,而随着USB打印机技术的逐渐普及,并行口打印机越来越不好买到,而且有些用户的打印机只是USB接口而非并行口,因此现有仪器产品对打印机的支持变得不能适应用户需要。为了实现能将公司的并行口仪器直接和USB打印机相连进行打印,决定设计开发一款LPT-USB打印机的驱动器,负责并口仪器和USB打印机的连接。 本文利用单片机和USB总线接口芯片实现LPT-USB打印机的驱动器设计。利用该设计将能够实现并行打印口数据可以在USB打印机上的直接打印工作,克服了有些并口仪器必须连接并口打印机才能打印的弊端,极大地方便了用户
[单片机]
基于80C51<font color='red'>单片机</font>和CH375芯片实现打印机驱动系统的设计
LCD驱动HT1621的PIC单片机源代码
STATUS EQU 3H FSR EQU 4H RB EQU 6H RC EQU 7H OPTIONA EQU 81H TRISB EQU 86H TRISC EQU 87H GENR0 EQU 053H GENR1 EQU 054H WD_RG EQU 055H DA_AG0 EQU 056H ;SEG0 SEG1 DA_AG8 EQU 05EH ;SEG16 SEG17 ;............................. C EQU 0 Z EQU 2 RP0 EQU 5 RP1 EQU 6 CS
[单片机]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved