基于ATmega16L单片机的温度控制系统设计

发布者:牟牟的侬最新更新时间:2011-12-02 关键字:ATmega16L  温度控制系统 手机看文章 扫描二维码
随时随地手机看文章
1 引言
    随着科学技术的进步,检测行业发展快速,除了检测项目和内容不断扩大,更重要的是检测愈来愈科学化、职能化,主要表现在检测过程及检测结果由计算机监控和显示。多点温度的采集控制近年来在检测行业应用较为广泛,其中以微机为核心的监控技术价格低廉,使用方便,应用也最普遍。
    本文主要介绍基于ATmega16L单片机的温度控制系统的设计,具体包括炉温的采集和控制、LCD显示以及PC机绘制温度变化的曲线图等。硬件和软件设计采用模块化的思想,系统集成度较高。

2 系统的硬件设计
    图1为系统硬件的总体结构图。系统由主控制器、温度传感器、运算放大电路、液晶显示电路、键盘电路、串口通信电路等构成。由结构图1可看出,系统模块较多,所以应合理分配I/O 口资源,各模块以ATmega16L单片机为核心相连接。

 


2.1 主控制器
    系统主控制器采用ATmega16L,该单片机是一款高性能、低功耗的8位AVR微处理器,具有先进的RISC结构,内部有大容量的ROM、RAM、Flash和EEPROM,集成4通道PWM,SPI串行外设接口,同时具有8路10位A/D转换器,对于数据采集系统而言,外部无需单独的A/D转换器,从而可节省成本。另外,该单片机提供JTAG调试接口,可采用自制的简易JTAG仿真器进行程序调试。[page]

2.2 温度采集电路
    图2为温度采集电路。该电路主要由温度传感器AD590和差分运算放大器AD524组成,其中温度传感器AD590是一种新型的两端式恒流器件。激励电压范围是4~30 V,测温范围为-55~+150℃。当AD590的电流流过一个5 kΩ的电阻时,温度升高1 K,该电阻上的电压增加5 mV,即转换成5 mV/K。因此,温度在0~100℃间变化时,电阻电压在1.365~1.865 V间变化。运算放大器AD524用于把绝对温度转换成摄氏温度。

 


2.3 温度控制电路
    该电路主要由光电耦合器和可控硅组成,如图3所示。单片机发出的控制信号(PWM)经驱动器后控制光电耦合器的工作状态。当光电耦合器工作后,使双向可控硅的触发极处于高电平,可控硅处于导通状态,进而控制加热棒的工作。

 


2.4 其他电路
    (1)显示电路系统的模块较多,I/0接口紧张,显示器选用液晶显示器TCl602A,接口采用高4位数据传输方式。
    (2)键盘电路系统采用非矩阵式键盘,该键盘结构简单,使用方便,不会占用较多I/O,适用于按键个数较少的场合。
    (3)串口电平转换 电路电平转换由MAX488器件完成,MAX488为RS-488收发器,速度高于MAX232,简单易用,单+5 V供电,外接少量器件即可完成从TTL电平到RS-488电平的转换。

3 系统软件设计
    系统采用分层控制方式保证温度控制系统稳定。下位机采用ATmega16L单片机作为硬件开发核心,采用C语言编程。上位机采用工控机作为监控系统,采用Visual Basic6.0编程,两层之间采用RS-488通讯实现数据交换。在单片机部分,软件设计采用模块化设计方法,整个软件可分为主程序、按键处理程序、A/D转换程序、增量式PID处理程序、串行通信程序和显示处理程序、数据保存处理程序、看门狗处理程序。

[page]

   (1)主程序 系统主程序主要完成系统各部件初始化操作,此外,在系统开始运行后等待按键处理。图4为其流程。

 


    (2)按键处理程序 键盘处理程序通常采用查询方法实现按键的识别,CPU只要一有空闲就调用键盘扫描程序,查询键盘,识别键值,并予以处理。
    (3)A/D转换程序 ATmega16有一个10位包括采样保持电路的逐次逼近型A/D转换器,该转换器与一个8通道模拟多路复用器连接,能对来自端口A的8路单端输入电压进行采样。通过设置ADCSRA寄存器的ADEN即可启动A/D转换器,只有当ADEN置位时,参考电压及输入通道选择才生效。向A/D转换器启动转换位ADSC位写“1”可启动单次转换。在转换过程中此位保持为高电平,直到转换结束触发中断。然后被硬件清零。
    (4)增量式PID处理程序 该温度控制系统具有滞后性、时变性和非线性,不可能建立该系统的精确数学模型,因此如果使用常规的线性控制理论,要达到满意的控制效果非常困难。采用  增量式数字PID控制器,可解决这个难题。
    增量式PID是指数字控制器的输出只是控制量的增量,由于计算机输出的是增量,所以误动作时对输出的影响较小。控制增量的确定仅与最近的k、k-1、k-2次的采样有关,所以能够较容易地通过加权处理而获得较好的控制效果。另外,对于数字控制系统,由于A/D转换器位数的限制,其输出控制量受最小和最大值的限制,系统加入抗积分饱和法对其优化。图5为增量式PID控制算法程序流程。

 

[page]

以下是增量式PID控制的程序代码:

 

    

    (5)串行通信程序 系统与上位计算机之间采用RS-488的串行数据传输方式。单片机采用中断方式接收数据,而发送数据则采用查询方式。
    (6)显示处理程序 LCD-TC1602A LCD接口设计采用4位控制方式,使用4位数据线D4~D7控制时序分两次传送,先传送高4位数据,再传送低4位数据。
    (7)数据读写处理程序 ATmega16单片机内部集成有512 B的EEPROM,它是作为一个独立的数据空间而存在的。ATmesa16单片机通过对相关寄存器的操作实现对EEPROM按字节读写。
    (8)看门狗处理程序 ATmega16单片机内部集成有硬件看门狗,看门狗由片内独立的振荡器驱动,设置看门狗的步骤为:先初始化并打开看门狗,然后把喂狗指令放在循环程序中。

4 系统测试分析
    各个模块测试完成后,将下位机由测试端的硬件通过串口与PC机连接,构成完整的温度测试系统。在上位机中运行Visual Basic编写的监控程序,通过下位机的键盘设置加热炉温度为80℃.单击“打开通信端口”,选择所要通信的端口后,单击“开始测温”,这时下位机就会向上位机发送实时温度值,并实时绘出温度趋势曲线。
    当单击“结束”时,整个系统停止工作。上位机显示的温度趋势曲线如图6所示,测试结果显示,该系统对加热炉温度的采集和控制比较准确。

 


5 结束语
    充分利用AVR ATmega16单片机的内部资源,系统集成 度高,系统利用增量式PID算法改变PWM的输出值,然后控制可控硅的开关,最终使被控对象的温度值趋向于给定的温度值。该系统操作容易、可靠性好,具有较高的实用价值。就其采样频率和分辨率来说属于中速类型,适合于对数据采样频率要求不是特别高的应用场合。

 

 

 

 

关键字:ATmega16L  温度控制系统 引用地址:基于ATmega16L单片机的温度控制系统设计

上一篇:利用ATmega8L单片机为主控的臭氧治疗仪设计方案
下一篇:ATmega1 28单片机的真随机数发生矗

推荐阅读最新更新时间:2024-03-16 12:47

如何选择选择温度测量控制系统
  温度测量与控制无疑是最常见的测量参数,因为它是很多操作和任务的关键。精确的温度测量和控制是非常重要的制成品的质量,如成品金属部件,一个过程或系统的高效安全运行。   在今天的市场上,有无数的设备监测和控制温度,范围从简单的温度控制器,复杂的分布式控制系统。大部分温度测量和数据采集产品适合当前的运作,但他们在恶劣的工业环境中应用时,必须小心。   许多低成本的监测和控制设备和系统执行应用程序,他们没有接触到环境压力。虽然这些成本较低的设备和系统可能会为他们的预期目的,他们往往不会执行以及过度的电噪声环境中或暴露过电压输入条件。因此,选择合适的设备将在其中运行的环境是至关重要的准确和可靠的性能。   选择这些温度测量和控制系统的
[测试测量]
基于DSP与数字温度传感器的温度控制系统
O 引言 20世纪60年代以来,数字信号处理器(Digital Signal Processing,DSP)伴随着计算机和通信技术得到飞速发展,应用领域也越来越广泛。在温度控制方面,尤其是固体激光器的温度控制,受其工作环境和条件的影响,温度的精度要求比较严格,之前国内外关于温度控制基本上都采用温度敏感电阻来测量温度,然后用风冷或者水冷方式来达到温度控制效果,精度不够且体积大。本文基于DSP芯片 TMS320F2812 与数字温度传感器DSl8B20设计出一个温度测量系统,根据测量所得的温度与设定的参量,并利用模糊PID算法计算出控制量,利用该控制量调节由DSP事件管理器产生PWM波的占空比,并作用于半导体制冷器,以达到温度控制
[工业控制]
基于DSP与数字<font color='red'>温度</font>传感器的<font color='red'>温度</font><font color='red'>控制系统</font>
基于MSC1201微处理器的温度控制系统的实现
摘要:介绍TI公司推出的一款用于数据采集系统的MSC1201型微处理器,该电路具有与8051型微处理器完全兼容的内核,执行速度更快,功耗更低。详细介绍基于此电路并配合ADI的AD590型温度传感器的温度控制系统的设计与实现。 关键词:MSC1201;数据采集;温度控制:AD590 1 引言 随着现代控制技术的发展,在工业控制领域需要对现场数据进行实时采集,在一些重要场合对数据采集的要求更高,例如在电厂、钢铁厂、化工领域的生产中都需要对大量数据进行现场采集,而温度采集又是其中极为重要的部分,因此,需要一种高精度、低成本的数据采集与控制系统。 为了方便地实现温度采集与控制系统,笔者选用MSC1201作为系统的MCU。MSC1
[传感技术]
基于数字PID和89C52单片机的温度控制系统
在工业生产过程中,温度是工业生产过程中常见的工艺参数之一,对温度控制的好坏直接影响产品的质量。及时准确地得到温度信息并对其进行适当的控制,在许多工业场合中都是重要的环节。对于不同生产情况和工艺要求下的温度控制,所采用的加热方式和控制方式均不同。本文介绍了一种基于89C52单片机的温度控制系统,本系统的任务是对温度进行实时监控与控制。它以温度传感器DSl820对温度进行测量、采样与转换,并将测量结果送给单片机;单片机将输人的温度值与内部指定单元的给定温度值进行比较,根据比较结果,通过一个执行机构(可控硅)对加热源(加热炉的温度)的开关状态进行控制。在控制环节中,本系统采用的是数字PID控制算法来实现上述功能。传统的PID控制电路结
[单片机]
基于数字PID和89C52单片机的<font color='red'>温度</font><font color='red'>控制系统</font>
TWI ATMEGA16L 丛机模式
#include main.h #define SLAVE_ADDRESS 0x05 #define SCL 0 #define SDA 1 #define TWI_PORT PORTC #define TWI_DIR DDRC //SLAVE RECEIVE MODE #define SR_SLA_ACK 0X60//从机接收地址响应 #define SR_SLA_FAIL 0X68//作为主机仲裁失败,自己的ALT+W被接收 #define SR_GCA_ACK 0X70//从机接收广播响应 #define SR_GCA_FAIL 0X78//作为主机仲
[单片机]
基于现场总线的智能仪表温度控制系统的设计
1 总线智能氧量分析仪结构 基于can总线的智能氧量分析仪以单片机c8051f040为中央 控制器 ,系统扩展的外围电路及接口电路数量少,系统的可靠性及稳定性较高,系统功能扩展及软硬件升级比较方便。系统的硬件结构见图1。外围硬件电路主要包括六部分:系统校正、数据采集、温度控制、日历时钟、带触摸屏的液晶显示、can总线接口。 图1 系统硬件结构 带触摸屏的液晶显示器提供了一个强有力的人机接口,有关信号、可调参数都能在上面显示和修改。本系统采用稳压电源,具有电源电压的适用范围大、抗干扰能力强等优点。主机是一种以单片机为基础的智能仪表,所有的运算、处理和控制都由软件完成。氧电势、温度信号的输人转换和电流输出的转换采用模块化元件。这
[单片机]
基于现场总线的智能仪表<font color='red'>温度</font><font color='red'>控制系统</font>的设计
单工无线呼叫及数据传输系统的设计与实现
简介:本文基于ATMEGA16L单片机实现一个具有单工语音和数据传输功能的无线呼叫系统。通过编码电路、单片调频发射电路和高频功放电路实现主站的语音及数据发送;通过解码电路、调频解调和语音功放电路实现从站的语音及数据接收。编码和解码用MSK调制方式的调制解调芯片MSM6882实现;主从机的显示电路采用LCD液晶显示,输入电路则采用PS2键盘扫描。 一、概述 目前,无线语音和数据通信的应用领域不断扩大,应用形式也趋于多样化。如移动通信系统、智能交通系统、远程控制网络等。本设计完成了一个单工无线呼叫系统,实现主站至多个从站的单工语音及数据传输业务。主站传送一路语音信号或短信,其发射频率为36MHz,发射峰值功率可调,实现小功率远
[单片机]
单工无线呼叫及数据传输系统的设计与实现
基于MSC1201微处理器的温度控制系统的实现
1 引言   随着现代控制技术的发展,在工业控制领域需要对现场数据进行实时采集,在一些重要场合对数据采集的要求更高,例如在电厂、钢铁厂、化工领域的生产中都需要对大量数据进行现场采集,而温度采集又是其中极为重要的部分,因此,需要一种高精度、低成本的数据采集与控制系统。    为了方便地实现温度采集与控制系统,笔者选用 MSC1201 作为系统 的 MCU 。 MSC1201 是的德州仪器 ( TI ) 新推出的一款低噪声、低成本数据采集微处理器,它具有的增强型 8051 内核,执行速度比标准 8051 内核快 3 倍,而功耗却更低, MSC1201 中的 ADC
[应用]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved