解析ARM9和Linux在机器人控制系统的应用

发布者:春林初盛最新更新时间:2012-01-16 关键字:ARM9  Linux  机器人控制系统 手机看文章 扫描二维码
随时随地手机看文章

引 言

现有智能机器人用直流电机作为驱动轮时一般都是用单片机或者高速的DSP等进行控制,智能机器人之所以叫智能机器人,这是因为它有相当发达的“大脑”。在脑中起作用的是中央计算机,这种计算机跟操作它的人有直接的联系。最主要的是,这样的计算机可以进行按目的安排的动作。正因为这样,我们才说这种机器人才是真正的机器人,尽管它们的外表可能有所不同。而且同一机器人往往需用多个CPU来实现各自的功能,但随着对机器人的智能化要求越来越高,需要一种新的控制器(使用一个处理器)来满足机器人的各种行为要求,例如视频采集、无线通信。本文介绍的利用ARM实现的智能机器人平台,为智能机器人的开发提供了一个新方法。Linux的引入使其他智能模块都以设备的形式存在,只有在用户需要的时候才调用相关设备驱动从而使数据融合更方便,运行多任务也更稳定。

利用ARM和嵌人式Linux作为智能机器人平台具有很大的优势,但在国内还未发现用该平台开发智能机器人的系统。本设计完成了对该系统驱动的初步编写,并通过实际验证,取得了良好效果。

1 驱动电路及测速方法

1.1 总体结构及驱动电路

系统的整体结构框图如图l所示。

本设计采用的LMD18200的真值表如表1所列。通过ARM的I/0口(例如D口的DO~3)来控制电机的工作状态。

1.2 测速方法

ARM没有捕获外部脉冲的计数器,它的定时器是用来计算内部脉冲的。码盘输出信号接外部中断处理程序(EINTl)并设置上沿触发变量,在中断中设置一全局变量i,用i++累加。设置定时器timer0,使它O.36 s产生1次内部定时器中断。当一个定时器周期完成时引发定时器中断,在timer0中断中读出i的值,即得到O.36 s内码盘转动所产生的脉冲数;接着将i清零,为下一个定时器周期捕获脉冲作准备。

1.3 测量精度分析

智能机器人选用的光码盘精度为256线,即256脉冲/转。电机减速比为1:71,车轮半径R为6 CM,车轮间距为41.1 cm.车轮转一圈所产生的脉冲数n=71×256=18 176,可以得到每个脉冲之间的距离d=27πR/n=2×3.14×0.06/18 176=0.207×10-4m,即每个脉冲对应的控制精度达0.02 mm.考虑到负载变化的影响,理论值与实际值会出现误差,因此在控制精度d前乘以一个修正系数k.表2为机器人直线行走的实验数据。可以看出,k为1.10误差较小,最接近真实值,因此该值就是所需的比例系数。

2 速度调节

一般的PID调节,PID调节是工业控制中应用最广泛的一种调节方式,在各种自控书籍及资料中,也经常看到PID这个字眼,那么什么是PID调节呢,PID是英文单词比例(ProportiON),积分(Integral),微分(Differential coefficient)的缩写。PID调节实际上是由比例、积分、微分三种调节方式组成,它们各自的作用如下:比例调节作用:是按比例反应系统的偏差,系统一旦出现了偏差,比例调节立即产生调节作用用以减少偏差。比例作用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降,甚至造成系统的不稳定。当偏差E较大时(如启动或大幅度提速时),由于积分的作用会产生很大的超调量,使系统振荡,因此选用积分分离的方法,开始时取消积分作用,直到被调量相差不多时才引入积分作用。具体步骤如下:

①设定一个值a>0,E(m)一R(m)一M(m),其中R(m)为给定值,M(m)为测量值;

②当E(m)≥a时,采用PD控制,可以避免过大的超调,又可以使系统有较快的响应;

③当E(m)≤n,即偏差值E(m)比较小时,采用PID控制,可以保证系统的精度。

使用积分分离方法后显着降低了被控变量的超调量并缩短了过渡时间,使调节性能得到改善。

3 驱动设计

本系统的驱动设计如图2、图3、图4所示。

设备驱动程序是操作系统内核与机器硬件之间的接口。它作为应用和实际设备之间的软件层,为应用程序屏蔽了硬件的细节。对于应用程序,硬件设备只是一个设备文件,应用程序可以像操作普通文件一样对硬件设备进行操作。把数据从内核传送到硬件和从硬件读取数据,读取应用程序传送给设备文件的数据和回送应用程序请求的数据,检测和处理设备出现的错误。用到的结构如下:

[page]

设备打开的时候就会调用dcmotor__open函数进行申请中断号。带内存管理的单元的地址映射,设置B端口的2、3引脚为PWM输出,端口D配置为电机使能刹车制动引脚。

以下所有的函数都是在ioctl()中实现的。在Dcmo-tor_STart里调用timer0_2_3_start(),设置timer0为接收两路电机的码盘信号,并检测电机速度;timer2、timer3提供2路PWM输出,并设置定时器自动重载。具体实现如下:

Select_Speed可以动态选择要运行的速度。它是用户的接口,用户可以调用该函数把速度值传到驱动从而控制电机。例如,在应用程序中执行ioctl(fdl,

timer0中断是核心程序,它可根据PID的调节值来改变占空比。为了便于随时改变占空比的值可定义两个全局变量tmp2、tmp3,通过把它们的值写入TCMPB来改变占空比。

在All_Forward、All_Back、All_Stop中,通过设置端口DO~3的高低电平,实现前进、后退、停止;在Left_Curve、Right_Curve中,设置左右轮的旋转方向,使两轮旋转方向不同,再根据差速在应用程序中给定预定时间,以达到转弯效果。

4 结 论

利用ARM和Linux操作系统实现智能机器人的闭环控制是可行的,闭环控制是控制论的一个基本概念。指作为被控的输出以一定方式返回到作为控制的输入端,并对输入端施加控制影响的一种控制关系。在控制论中,闭环通常指输出端通过"旁链"方式回馈到输入,所谓闭环控制。输出端回馈到输入端并参与对输出端再控制,这才是闭环控制的目的,这种目的是通过反馈来实现的。而且可以充分利用ARM的强大功能实现其他智能模块的扩展。

关键字:ARM9  Linux  机器人控制系统 引用地址:解析ARM9和Linux在机器人控制系统的应用

上一篇:解析ARM926EJ-S在MPEG-4软解码器的优化与实现
下一篇:解析ARM在脑电信号采集系统的应用

推荐阅读最新更新时间:2024-03-16 12:51

Linux学习-等待队列
由于学习linux驱动编程,学习到了堵塞型IO读写,等待队列的操作比较的有意思,拿来分析分析,其中的一些代码还是蛮有意思的,感受到了linux的美,体会到了艺术家和一般程序员的差别。 我就简要的分析分析等待队列的一些问题,就相当于自己的总结吧。边学驱动,边学内核,还是蛮有意思的。 1、等待队列的定义,包括两个,等待队列头,节点。 struct __wait_queue_head { spinlock_t lock; /*自旋锁*/ struct list_head task_list; /*链表头*/ }; typedef struct __wait_queue_head wait_que
[单片机]
基于Linux平台和嵌入式控制计算机实现排爆机器人控制系统的设计
:王春宝;蒋梁中;林焯华;李朝清 排爆机器人属于搬运机器人的一种类型,很多搬运机器人是模仿人类的动作,用来帮助或部分代替人来进行繁重、危险、重复等工作。排爆机器人模仿人类的行走、抓取物体的动作,可以被用来排除现场的爆炸物。排爆机器人机械部分包含行走小车和机械手臂。 1 排爆机器人控制系统结构 图1排爆机器人控制系统基本结构 2 小车的行走控制 人工通过控制杆(或按钮),在小车引导图像(可视信号)的指示下,完成前进、后退、左转、右转和原地旋转的功能直至达到机械手的手爪能抓取可疑爆炸物的位置为止。机器人的平衡是利用整机的动力学算法求得,将求得多种数据去控制机器人手臂的空间姿态从而达到整机平衡而不至于倒覆。例
[机器人]
嵌入式linux开发 (十八) 内存管理(2) ARM内存管理
硬件对内存的管理 armv7v8 ARM是统一编址的,也就是外设和(内存A)进行统一的编址,共同形成了4G物理地址空间(32位为例子)。 内存控制器属于外设,内存属于(内存A). 一个soc内部及外扩的内存都属于(内存A). 存储器架构 哈佛架构 cortex-M cortex-A MPU MMU 的概念定义及实现定义 MPU: The memory protection unit (MPU) is used to manage the CPU accesses to memory to prevent one task to accidentally corrupt the memory or resources
[单片机]
基于ARM9的汽车视频监控防盗系统设计
  本文基于三星公司的S3C2410为控制中心, 设计一种汽车视频监控系统。系统主要由S3C2410处理器、USB摄像头、触摸显示屏组成, 阐述了系统硬件设计的基本工作原理, 平台定制和摄像头图像监控防盗程序的设计流程。采用摄像头对图像数据进行采集, 触摸显示屏对视频图像进行存储和处理, 达到防盗的目的。   触摸显示屏接口电路   USB接口电路
[单片机]
基于<font color='red'>ARM9</font>的汽车视频监控防盗系统设计
工业机器人控制系统架构介绍
本文比较了机械臂和移动机器人两种工业机器人的控制系统方案,对其特点进行了介绍。 以上分类是根据应用对象,此外,市面上更多的是通用型运动控制器,即控制非标设备的。 1 控制器底层方案 1.1 机械臂类 机械臂类的控制器发展较早,相对成熟,先来看看现有的控制系统底层方案。 1.2 移动机器人类 移动机器人的控制器属于较新的方向,工业移动机器人有AGV、无人驾驶工程机械等形式,控制系统底层方案如下: 1.3 对比 机械臂对精度和运动稳定性的要求较高,因此计算量大、周期短,比移动机器人一般要高1到2个量级。移动机器人一般对同步精度要求不高,其配置相对较低。 机械臂一般工作于固定的区域,其
[嵌入式]
工业<font color='red'>机器人</font><font color='red'>控制系统</font>架构介绍
如何在VIM中实现对嵌入式软件的调试
   引 言   GNU免费提供了一整套工具链,为嵌入式Linux程序的开发和调试提供了完整的支持。其强大的gdb调试工具可以方便地对嵌入式平台上的程序进行跟踪调试;而Linux下强悍的VIM编辑器,不仅可以方便地调用make文件对代码进行编译,而且通过脚本的配置还可轻松地成为高效的代码编辑环境。流传着这样一种说法,“世界上的程序员分三种,一种使用Emacs,一种使用VIM,剩余的是其他。”不去辩论这句话的对与错,单纯从字面意义上来理解,也足见VIM的魅力了。因此,在VIM中实现对嵌入式软件的调试,我们便得到了一个高效、稳定的嵌入式Linux的开发环境。    1 gdb对嵌入式软件的调试模式   许多非Linux的嵌
[嵌入式]
Linux2.6内核中的最新电源管理技术综述
  本系列文章将结合近年来不断在各种硬件(包括 CPU、芯片组、PCI Express 等各种最新总线标准以及外设)上新增的节能技术。   从 Linux® 2.6内核及整个 software stack (包括 kernel、middleware 以及各种用户态 utility)如何添加对这些创新的节能技术的支持这一角度,为读者介绍 Linux 操作系统近几年来在电源管理方面所取得的长足进步以及未来的发展方向。   作为本系列文章的开篇之作,首先要向大家介绍的是 cpufreq,它是 Linux 2.6内核为了更好的支持近年来在各款主流CPU 处理器中出现的变频技术而新增的一个内核子系统。    Cpufreq 的由来
[单片机]
<font color='red'>Linux</font>2.6内核中的最新电源管理技术综述
基于嵌入式Linux图形用户接口的实现方法
随着Internet与网络的迅速发展 并向家庭领域不断扩展,使消费电子、计算机、通信(3C)一体化趋势日趋明显,嵌入式系统再度成为研究与应用的热点。嵌入式实时Linux操作系统以价格低廉、功能强大又易于移植而正在被广泛采用,成为新兴的力量,如今随着WAP手机、PDA、机顶盒、及DVD/VCD播放机已经迅速普及,用户对这些手持式设备的GUI提出了更高的要求,希望能看到像PC机才拥有的华丽美观的GUI。GUI已经成为了人与机器沟通的桥梁,嵌入式系统对GUI的需求越来越高,而这一切均要求有一个轻型、占用资源少、高性能、高可靠、可配置及美观的GUI支持。   1 Java的图形界面工具   Java技术对于服务器,个人电脑和嵌入式系统
[工业控制]
基于嵌入式<font color='red'>Linux</font>图形用户接口的实现方法
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved