SPMC75实现交流变频驱动控制

发布者:耿高良最新更新时间:2012-02-01 来源: 凌阳单片机推广中心关键字:SPMC75  交流变频  VVVF 手机看文章 扫描二维码
随时随地手机看文章

1 引言

系统输入电源电压为AC110V/AC220V,经全波整流后供系统使用。系统使用 Sunplus公司的SPMC75F2413A产生AC三相异步电机的VVVF控制所需的SPWM信号,并完成系统控制。使用智能功率模块实现电机的功率驱动。在AC220V输入时,系统最大能驱动1.5KW的负载。系统的变频区间为2Hz~200Hz。

2 系统框图

系统结构如图2-1所示,主要由变频电机、电源供给、IPM功率放大、IPM隔离驱动、SPMC75F2413A组成的控制核心几部分构成。

图 2-1 系统结构图

3 感应马达V/F控制

3.1 功能描述

利用SPMC75F2413A的TMR3实现AC 三相异步电机的V/F开环控制。使用DDS(直接数字频率合成)的方式产生控制所需要的三相SPWM。根据电机的V/F曲线随频率自动调整输出电压的大小。由于DDS固有的特点,在进行频率调整的过程中相位是连续的,用户可以在任何时候更改输出频率而不需关心当前的相位问题。同时,用户可以根据自己需要更换波形数据表而实现非正弦的波形输出。

3.2 设计原理

3.2.1 感应马达V/F控制原理

在电机调速时,最重要是要保持磁通为额定值不变。在直流电机中,励磁系统独立,只要对电枢进行合适的补尝,保持不变很容易。而在交流异步电机中,磁通是定子和转子的磁势合成的。而且满足:
 (3--1)
式中:
 --气隙磁通在定子每相中的感应电动势的有效值;
 --定子频率;
 --定子每相绕组的串联匝数;
 --基波绕组系数;
 --每极气隙磁通量;
由式(2--1)可知,只要控制好,便可达到控制磁通的目的,为此,得考虑基频以下和基频以上两种工作情况。

1.基频以下调速
由式(2--1)可知,只要保持为常值,就可以保持不变。但是,绕组中的感应电动势是很难直接控制的,在电动势较高时可以忽略定子绕组的阻抗压降而认定,则有 = 常值;在低频时都比较小,这时不能忽略,可以人为的抬高去补尝定子绕组的阻抗压降。

2.基频以上调速
当基频以上调速时,频率往上升高,但却不能比额定电压还要大,顶多只能使  =。因此,由式(3--1)可知,这将迫使磁通与频率成反比,相当于直流电机弱磁升速的情况。
将以上二种情况结合起来就可以得到异步电机如图 3-1所示的变频调速特性。同时这也是变频电机调速的V/F曲线图。在实际运用中,V/F开环控制也是沿着这条曲线进行的。

图 3-1 三相感应电机的V/F曲线

3.2.2 正弦波生成原理

要使三相感应马达正常运行,需要使其电枢绕组通以三相交变电流,以产生圆形旋转磁场。产生三相交变电流的方法有很多,本例中使用SPWM来产生三相正弦电流。图 3-2 是三相SPWM生成原理

图 3-2 三相SPWM生成原理

本例使用DDS(直接数字频率合成)的方式产生SPWM。如图3 -3 所示,整个系统是一个典型的DDS频率合成系统,只不过用PWM发生模块去替换了传统的DAC。在本系统中波形数据表的大小为1024点,PWM载波频率为10KHz。波形数据表取1024点一是为了计算方便,因为在相位累加后查表的过程中有一个相位截取的操作(我们的相位累加器是16位的,而波形数据表是1024点--10位),为了加快这一处理过程,选用以大小的表有利于加快处理过程,以尽量节约CPU的运算时间。同时当波形数据表为1024点时,波形发生过程中的理论的最大相位误差这样加上软件处理过程中引起的一些相位抖动,最大的相位误差也不会超过。同时,在三相同时产生时,由于表的大小是,不是3的整数倍,因此代表相位差的常数会有的误差,会使三相之间的相位关系不是整好的,但误差不会超过。还有,较大的数据表有利于保证低频时的波形精度。

图 3-3 三相SPWM生成原理图


注意:本例所讨论的一些公式都是保证波形的幅度精度比相位精度高情况。实际上,当幅度精度变差时,相位误差会变大。本例中的波形数据表不限于标准的正弦表,用户可以根据自己的需要决定自己的波形。如加入三次谐波的增强型波形等。在V/F控制中,当频率比基频低时,调制系数小于1,有效样点数会比实际样点数少,因为幅度调制使波形的幅度分辩率下降,会出现样点重复的情况。因此,建议用户在低频时提高 PWM的分辨率。

4 软件说明

系统的软件部分主要是完成AC变频马达的V/F开环变频驱动功能,主要包括SPWM发生的中断服务函数,DMC通信协调等几个部分。

4.1 主流程与说明

主程序在完成系统初始化以后,就不断检测有没有来自PC的控制信息,如果有便完成相应的控制功能,没有就继续检测。

主程序主要完成各个模块的初始化,而后便监视UART的数据接收情况,如果收到了有效的波形参数数据,则调用SPMC75_SPWM_VF_account (unsigned int F,unsigned int Kvf,int Moto) 对波形参数进行预置更新,而波形数据将在预置更新完成后的第一个PWM周期中断中完成波形数据更新操作。主程序流程如图 4-1所示。

图 4-1  主程序流程

4.2 中断子流程与说明

进入PWM的周期中断片后,程序首先判断有没有新的波形参数设置,如果没有就直接进入DDS频率合成,如果有则先更新波形参数(相位增量和幅度调制系数),而后进入DDS频率合成。DDS合成是在每一次PWM的周期中断,波形相位在原相位的基础上加上用户设置的相位增量值N(这个值正比于波形频率),而后查出这个相位所对应的幅度值,同时还查出距这个相位120度和240度的二个相位对应的幅度值,最后将这三个值分别乘以幅度调制系数AM后送入PWM产生模块产生相应占空比的PWM信号。其流程图如图 4-2所示。

x图4-2 TMR3周期中断服务流程

5 实测波形
  以下是驱动例的实测电流波形:

图5-1 10Hz时的电流波形  100mV/A

图5-2 30Hz时的电流波形  100mV/A

图5-4 70Hz时的电流波形  100mV/A

图5-4 70Hz时的电流波形  100mV/A

图5-5 100Hz时的电流波形  100mV/A

图5-6 150Hz时的电流波形  100mV/A

6 参考文献

【1】SUNPLUS       SPMC75编程指南            www.sunplusmcu.com
【2】陈伯时.电力拖动自动控制系统(第二版).机械工业出版社, 2000年。

关键字:SPMC75  交流变频  VVVF 引用地址:SPMC75实现交流变频驱动控制

上一篇:基于ATT7022在线宽量程电能测量仪的设计与实现
下一篇:Keil软件仿真的串口调试技巧

推荐阅读最新更新时间:2024-03-16 12:51

高频交流环节AC/AC变频变换系统基准正弦电路研究
0 引言 传统的逆变技术虽然成熟可靠、应用广泛,但存在体积大且笨重、音频噪音大、系统动态特性差等缺点。用高频变压器替代传统逆变器中的工频变压器,克服了传统逆变器的缺点,显著提高了逆变器的特性。高频脉冲交流环节逆变器具有双向功率流、两级功率变换(DC/HFAC/LFAC)、变换效率和可靠性高等特点,成为近几年电源界研究的热点。 1 新颖的变频变换系统 新颖的高频交流环节AC/AC变频变换系统,如图1所示。该电路由输入周波变换器、高频变压器或高频储能式变压器、输出周波变换器构成,能够将一种频率的交流电变换成另一种频率的交流电,具有两级功率变换(LFAC/HFAC/LFAC)、变换效率高、双向功率流、高频电气隔离、无音频噪音
[电源管理]
贝加莱基于PCC控制的交流变频电牵引采煤机应用
1 引言 采煤机是综采工作面的主要设备,它的正常运转决定着综采工作面的生产效率。采煤机的性能是否可靠,一方面取决于机械部分的设计与制造,以及是否合理地使用,另一方面取决于电气控制系统是否完善有效。如果将采煤机比作人,机械部分就是人的四肢和躯干,电气部分就是人的大脑,所以,电气控制系统在采煤机中至关重要。目前国产采煤机的电气控制系统的控制器基本上都是各种品牌的PLC,虽然由PLC控制的采煤机具有监测和故障诊断功能,基本能满足使用的要求。但由于采煤机工作环境恶劣,零部件多,结构复杂,致使采煤机司机不能及时掌控采煤机的各项运行参数,可能使采煤机带病工作,进而出现故障,为了提高采煤机的开机率,必须增加采煤机远程监测和故障诊断功
[工业控制]
dsPIC及其在交流变频调速中的应用研究
  在现代交流调速中,越来越多地采用交流变频调速。PWM变频器与鼠笼型电机的结合,就性价比而言是公认的优选方案。Microchip公司生产的16位微处理器dsPIC30F4012具有片内波形发生器,是专为电机高速控制而设计的。本文引入了dsPIC30F4012芯片,并介绍采用它与IPM模块结合实现的全数字化SPWM变频调速系统的构成及基本算法。系统主电路采用交直一交电压型变频方式,逆变电路采用三菱电机推出的第4代智能功率模块PM100CVA120,给出实验结果。实验结果表明,系统有较好的控制效果,具有较高性价比,有广泛的应用前景。   1 控制芯片dsPIC30F4012介绍   dsPIC30F4012是Microchi
[单片机]
dsPIC及其在<font color='red'>交流</font><font color='red'>变频</font>调速中的应用研究
伺服和变频交流电机应用的异同
伺服和变频在交流电机应用的异同 一、两者的共同点: 伺服与变频的一个重要区别是: 变频可以无编码器,伺服则必须有编码器,作电子换向用,交流伺服的技术本身就是借鉴并应用了变频的技术,在直流电机的伺服控制的基础上通过变频的PWM方式模仿直流电机的控制方式来实现的,也就是说交流伺服电机必然有变频的这一环节:变频就是将工频的50、60HZ的交流电先整流成直流电,然后通过可控制门极的各类晶体管(IGBT,IGCT等)通过载波频率和PWM调节逆变为频率可调的波形类似于正余弦的脉动电,由于频率可调,所以交流电机的速度就可调了(n=60f/2p ,n转速,f频率, p极对数) 二、谈谈变频器: 简单的变频器只能调节交流
[电源管理]
通用VVVF变频器的原理图
智能功率模块的原理与应用 由日本三菱电机公司开发出的IPM系列产品,属于第三代智能功率模块。它采用第三代IGBT来代替传统的功率MOSFET和双极型达林顿管,并配以功能完善的控制及保护电路,构成了一种理想的高频软开关模块。这类模块特别适用于正弦波输出的变压变频(VVVF)式变频器中。 IPM系列产品的内部框图如图5所示。模块内部主要包括欠压保护电路、驱动IGBT的电路、过流保护电路、短路保护电路、温度传感器及过热保护电路、门电路和IGBT。该系列产品配16位单片机后构成的通用VVVF变频器的原理图,如图6所示。 图5 IPM系列产品的内部框图 图6 通用VVVF变频器的原理图
[模拟电子]
通用<font color='red'>VVVF</font><font color='red'>变频</font>器的原理图
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved