0 引 言
聚光式太阳集热器尽管必须精确地跟踪太阳,以确保好的效果,但仍然比普通的平面太阳集热装置有着明显的优势,特别是中温和高温应用。
各种型式的装置,从简单到复杂,应用于太阳跟踪,主要可以分成两大类,即机械系统和电控系统。电控系统一般说来有较高的稳定性和跟踪精度。电控系统又可以进一步分为两大类:
1)用光学传感器作为反馈的模拟控制系统;
2)计算机根据数学公式计算太阳位置进行跟踪,并通过光学传感器作为反馈的数字系统。
根据传感器工作的模拟系统适应性较差,在多云天气会盲目跟踪云层边沿的亮斑,造成能源的浪费和机械的额外磨损。
数字系统一般被认为具有较高的精度和较好的适应性,但是系统复杂而昂贵。
如果适当地对系统的计算对象进行简化,就可以用成本较低的单片机代替昂贵的可编程控制 器或者微型机实现数字化的跟踪控制系统。从而大大降低系统的成本,同时保留数字系统特有的灵活性和精确度。
1 系统描述
本文所述系统的跟踪策略是根据日期和时间控制聚光器的运动,并利用光学传感器调整聚光器的初始位置,在运行中对聚光器的位置进行校正。
如图1所示,系统由6个部分组成,分别是时钟、单片机、驱动机构、编码器、聚光镜和传感器。系统的核心部件是80C196KC单片机。
单片机利用时钟提供的日期和时间,计算出聚光镜的预期位置,与编码器提供的当前位置比较,输出控制信号。驱动装置根据单片机提供的信号转动聚光镜,同时通过编码器将运行速度或位置增量反馈到单片机,形成闭环控制系统。
由于当前位置是由增量式计算得到的,若当前位置的计算出现偏差,则不能够由反馈得到校正,从而形成累积位置偏差。为此,必须通过传感器监视聚光镜的位置是否与太阳偏离,当偏离时启动一个校正程序,达到消除当前位置误差的作用。
光学传感器A和B随聚光器一起运动,为单片机提供太阳辐射信息。传感器A采用文献[1]提到的金字塔形布置的光电池组,4块光电池分成两组,分别提供方位角和高度角的偏差信号,当聚光器轴线指向太阳时,输出零信号;偏离时,信号随偏离的角度以及太阳直射辐射强度的增加而增加(图2)。传感器B由一块接受全天辐射的光电池和一块遮挡直射辐射的光电池组成,提供太阳直射辐射强度信号,信号随直射辐射强度值的增加而增加(图3)。传感器A和B选用的所有光电池应尽量保持一致。
1)判断天空直射辐射的强度,在直射辐射较弱时不启动校正程序,从而避免多云天气的盲目跟踪;
2)通过简单的修正运算,降低甚至消除环境(太阳辐射、温度等)对偏差信号的影响,使修正后 的偏差信号在偏差角度相同时,能够较为一致。
2 控制系统
16位单片机80C196KC具有较强的运算能力,通过编制程序可以完成浮点数的基本运算。由于太阳在天空的位置可以由纬度、日期和时间完全确定,因此利用这些信息可以达到精确跟踪 的目的。控制系统框图如图4所示。
如前所述,系统采用单片机计算出的太阳方位作为聚光镜位置期望值输入,驱动装置的输出作为反馈构成闭环系统。为了达到稳定性和精确度的要求,分别采用了PD调节器和补偿通道。
驱动装置的传递函数一般可以表示为分别表示驱动装置的增益和时间常数。仅采用比例k1调节时,其闭环阻尼系数是闭环系统的总增益,一般不能满足要求。加入PD调节器后,ζ=可以通过调节微节微分时间常数Td使阻尼系数满足要求。
由于太阳运行位置的变化基本上属于斜坡输入,仅采用比例微分调节器时,闭环系统存在稳态误差ess=1/K。增大系统的K值可以减小稳态误差,但过大的K值会使系统的无阻尼自然频率接近或大于单片机的采样频率,使系统失去稳定性。积分项虽然可以消除系统的稳态误差,但一定条件下可能导致系统的稳定性变差。
令Z(s)=1,则原系统的特征方程不变,因而稳定性不发生变化。令上式右端分子的零阶和一阶项的系数为零,则斜坡输入的稳态误差为零。
设L(s)=L0+L1 s,代入上式右端分子,可得:
由于补偿通道消除了系统的静态误差。主通道不再需要安排积分环节消除稳态误差,成为比例微分控制,有利于系统的稳定性。对于不同的被控对象,可以选用不同的L1、k1和Td值,使系统的稳定性和动态特性得到保证。这种参数的调整非常简便,体现了数字控制的优越性。
对图4虚框中的传递函数离散化时,可以将微分项用后向差分代替,算法非常简单。采用足够小的采样周期时,可以保证离散化后的系统不会失去稳定性。单片机采用12MHz晶振时,定时器1溢出的周期约为87ms,具有50多万个状态周期[4],足以完成简单的计算任务,而太阳在这样短时间内的位置移动可以忽略不计。因此用定时器1溢出的周期作为采样周期有以下优点:
1)可以满足计算任务。对于试验系统的时效分析表明,控制计算所用的机时不及总机时的15%;
2)当选取系统总增益K,使闭环系统的无阻尼自然频率不高于1Hz时,可以使离散化方法保持稳定和达到足够的精确度。对系统的逻辑分析结果表明了系统的稳定性和精度。
3 校正系统
上述计算机控制系统虽然有很高的精确度,但是系统的位置反馈量仍然有可能产生误差。而且由于位置反馈量的增量式算法,这种误差不能通过编码器检测出来,因此可能形成累积误差。这种累积误差可以通过光学传感器提供的偏差信号来进行校正。
由于扰动的存在,偏差信号总是会有所波动,如果一旦偏差信号不为零就进行校正,则使系统变为了传感器控制,与模拟系统相比不具备任何优势。对修正后的偏差信号设定一个死区,可以大大的减小偏差信号的波动对系统的影响,增加系统的稳定性,系统的跟踪精度可以通过设定死区大小来保证。当经修正的偏差信号大于某给定值,即超出死区范围,且传感器B给出的参考信号反映的直射辐射强度不低于某一阈值时,启动误差校正程序。设定阈值的目的是为了使系统在太阳直射辐射太弱,即太阳被遮挡时,不启动校正过程,避免了多云天气盲目跟踪云层边沿的亮斑。校正过程分两步实现:
1)用光学传感器偏差信号代替图4中的位置量反馈误差E(s),组成反馈环,使偏差信号趋于0。
2)当偏差信号达到零时,对输出位置量赋值,使输出位置量等于期望位置量,同时切换回原来的反馈系统,完成校正过程。
由于系统结构没有发生变化,因此上述第一步形成的闭环控制系统稳定性不会发生变化。
4 结 论
1)可以利用单片机实现成本较低的数字化太阳跟踪系统。
2)虽然经过简化,在太阳跟踪控制中,单片机系统具备较好的稳定性,并能够达到相当好的精确度,同时具备模拟系统不具备的灵活性。
3)利用光学传感器,单片机系统可以实现位置的自动调整。
[2] Soteris AKalogirou.Design and construction of a one-axissun-tracking System[J].Solar Energy,1996,57(6):465-469.
[3] Leonard DJaffe.Testresults on parabolic dish concentra-torsfor solar thermal power systems[J].Solar Energy,1989,42(2):173-187.
[4] 孙涵芳.Intel16位单片机[M].北京:北京航空航天大学出版社,1999.
上一篇:基于80C196KC单片机的电力补偿装置控制系统设计
下一篇:基于RS485总线的单片机对等网络的设计与实现
推荐阅读最新更新时间:2024-03-16 12:52
设计资源 培训 开发板 精华推荐
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况