在应用于管道缺陷检测的众多无损检测技术当中,超声导波检测技术与常规无损检测方法相比,具有检测距离长,检测速度快等突出优点。超声导波在管道中传播时存在多模态与频散特性,若超声导波所用的激励源仍采用常规超声检测时宽带激励的方法,则在管道中所激发出的超声导波,将会发生频散,即不同频率的超声导波其群速度也不一样,这样会使管道中接收到的超声导波回波信号的幅值微弱,不利于缺陷检测的分析与处理,频散严重时可能无法得到缺陷回波信号。通过分析频散曲线可知,在某一频率范围内,某一模态的导波几乎不发生频散,纵向轴对称导波模态L(O,2)就是其中的一种,L(0,2)模态在一定的频率范围(40~500 kHz)内其传播速度几乎保持不变,且传播速度最快。若采用相应频段内的窄带脉冲作为激励信号,则可激励出L(O,2)模态占主导的超声导波,这样可最大限度地避免超声导波的频散现象带来的不利影响。利用高速单片机,数模转换器等设计了专门用于激励超声导波的窄带激励信号源,该信号源可实现汉宁 (Hanning)窗的宽度可调,单音频信号频率可调的功能,提供了一种用于激励超声导波的激励信号源的设计方法。
1 系统总体结构
在进行超声导波管道检测时,一般选用汉宁窗调制单音频的窄带信号脉冲作为激励信号源,即选的激励函数为
其中,f为单音频信号频率,n为汉宁窗调制的单音频的周期数。
根据超声导波在管道中的传播特性,对于不同材料及尺寸的管道,所需的超声导波窄带激励信号的频率及周期数不尽相同。利用高速单片机与数模转换器构成信号发生器,实现汉宁窗调制下的单音频信号的频率可调及汉宁窗宽度可调的功能,由数模转换器输出的信号经过差动放大、低通滤波等处理后,可产生用于激励超声导波的窄带激励信号。总体结构如图1所示,其中键盘与显示屏分别用于设置与显示汉宁窗信号调制单音频信号的周期数、单音频信号的频率及汉宁窗脉冲的时间间隔。
2 硬件电路设计
2.1 单片机与D/A转换器的接口电路
针对管道超声导波检测对激励信号需求的特点,激励信号源的单音频的频率范围选定在40~500 kHz之间,根据采样定理,激励信号源信号发生器的采样频率至少要为信号频率的2倍,为了得到较为平滑的信号波形,并降低后续滤波电路设计的难度,这里采样频率的取值在10倍的信号频率以上。普通单片机由于受到工作频率的限制,其能产生的单音频信号的频率最高也只能达到100 kHz左右,不能满足设计需求。为了使信号发生器能输出较高的频率,选用超高速单片机DS89C430作为整个电路的控制部分,它是当前8051兼容微控制器中性能最高的单片机之一,在相同的晶振频率下,执行指令的速度是普通的8051微处理器的12倍,工作在33 MHz的最高频率下,其单指周期仅为30 ns。数模转换器件选用美国ADI公司推出的AD9708器件,它具有125百万次/秒的更新速率,8位分辨率,且有较高的信噪比,非常适用于超声导波激励信号的生成。采用时钟频率为30 MHz的DS89C430控制AD9708作为产生超声导波激励信号的信号发生器,图2为单片机DS89C430与AD9708连接的电路图,AD9708的数据线DO~D7均与P1口相连,其时钟输入CLOCK与P2.O相连,时序通过软件实现。
2.2 差动放大电路
为了使输出电压具有正负极性,采用把数模转换器AD9708的两输出端IOUTA和IOUTB接到运算放大器LM318组成的差动放大电路的两输入端,LM318具有较高的共模抑制比与转换速率。它与AD9708组成的差动放大电路如图3所示。
2.3 滤波电路
由于数模转换器AD9708输出的信号附加有大量的高频噪声,进行必要的平滑滤波处理后才能得到所需信号,选用由运算放大器LM318及必要的元件组成二阶压控电压源低通滤波器,如图4所示,其中,截止频率,放大倍数为1.5倍,这里的Q值由滤波电路的放大倍数设定,其值为2/3。在电路的最后增加了一级电压跟随器。
[page]
3 系统软件设计
主程序主要由初始化子程序,显示子程序,按键扫描及相应处理程序和波形数据点的输出等组成。系统的主程序流程如图5所示。
在程序设计过程中,考虑了整个硬件电路的资源情况。如在高频处由于受单片机的工作速度的影响,发送的波形数据点在满足设计要求的条件下进行了相应的减少;在低频处,由于受到滤波器的截止频率已确定的影响,发送的波形数据点进行了相应的增加调节,这样在低频范围内便可得到符合设计要求的平滑的波形。
4 实验结果
图6显示了设计电路产生的激励信号的波形,从图中可以看出,激励信号的最高幅值约为1.5 V,单音频信号频率为100 kHz,汉宁窗调制10个周期的单音频信号,即所产生的激励信号脉冲的时程宽度为0.1 ms。实验表明设计合理,波形的产生满足设计要求,生成了正确的完整的所需信号,此窄带脉冲激励信号可方便地应用于管道缺陷检测。
5 结论
利用超高速单片机DS89C430数模转换器AD9708等器件,提出了一种超声导波管道检测系统的激励信号源设计的方法,此电路具有单音频信号的频率、汉宁窗宽度均可调的功能。电路产生的窄带脉冲激励信号经功率放大器激励管道超声导波专用探头,激发出的管道超声导波,可在一定程度上减小超声导波在管道中传播时的频散现象给管道缺陷检测带来的不利影响。与选用通用仪器任意函数发生器等作为超声导波的激励源相比,可节约大量的成本,减小检测设备的体积,便于超声导波检测系统的集成化、小型化、产品化。
关键字:DS89C430 超声导波 信号源
引用地址:
DS89C430的超声导波激励信号源的设计
推荐阅读最新更新时间:2024-03-16 12:53
TD-SCDMA多模终端生产测试探讨
终端生产测试可使用信令模式(综测仪)和非信令模式(信号源、信号分析仪)两种方案。综测仪更符合规范的信令一致性;而信号源、信号分析仪具有更大的灵活性,更快的速度和更好的精度。TD-SCDMA终端测试必须包括对GSM模式的支持,同时,为提高终端产品的竞争力,厂商生产的TD-SCDMA终端还可能包括GPS、蓝牙、WiFi(802.11b/g)、DVB等模式。目前市场上还没有能同时支持这些模式的综测仪,因而,信号源、信号分析仪在对多模式的支持方面凸显出优势。对于这种模式缺乏信令支持的弱点,可以通过芯片厂商提供的物理层(L1)信令模拟软件进行弥补。随着芯片厂商对物理层(L1)信令模拟软件的逐步开放,非信令模式方案越来越受到终端生产
[手机便携]
可切换成高端GNSS模拟器的通用矢量信号源—R&S SMW200A
罗德与施瓦茨在R&S SMW200A的GNSS模拟器中增加了GPS L5和Galileo E5特性 2017年发布至今,R&S SMW200A是业界第一个且唯一一个可切换成高端GNSS模拟器的通用矢量信号源,产生GNSS信号的同时允许内置模拟复杂干扰环境。该独一无二的解决方案在增加对L5/E5频段的支持后功能得到了进一步增强。 当今越来越多的GNSS接收机可接收如L1、L2和L5等多频信号,虽然多频段支持能力以及处理来自于GPS、GLONASS、Galileo或BeiDou等多种导航信号使得接收机设计变得更加复杂,但这确保给终端用户提供更佳的服务质量。多频和多星座处理能力不仅改善了定位精度、服务可用性和鲁棒性,也让定
[测试测量]
基于DDS和FPGA技术的高动态扩频信号源的研究
摘要: 提出一种基于DDS和FPGA技术的高动态扩频仿真信号源的实现方案。采用了DDS技术的芯片AD9854和AD9850,能够模拟多普勒频移,实现高动态环境仿真。载波中心频率变化范围达到100kHz,变化率1.8kHz/s。
关键词: 扩频 DDS FPGA 多普勒
扩展频谱通信(Spread Spectrum Communication)作为一种新型的通信体系,具有抗干扰能力强、截获率低、码分多址、信号隐蔽、保密、易于测距等优点,是通信领域的一个重要发展方向。正是由于这些优点,扩展通信在军事上受到了极大的重视。为配合高动态扩频接收机的研究,迫切需要一台能够精确模拟高机动目标环境条件下
[网络通信]
STM32 ADC应用中信号源特性对转换结果的影响
STM32家族中的所有芯片都内置了逐次逼近寄存器型ADC模块.内部大致框架如下: 每次ADC转换先进行采样保持,然后分多步执行比较输出,步数等于ADC的位数,每个ADC时钟产生一个数据位。说到这里,用过STM32 ADC的人是不是想到了参考手册中关于12位ADC转换时间的公式: ST官方就如何保障或改善ADC精度写了一篇应用笔记AN2834。该应用笔记旨在帮助用户了解ADC误差的产生以及如何提高ADC的精度。主要介绍了与ADC设计的相关内容,比如外部硬件设计参数,不同类型的ADC误差来源分析等,并提出了一些如何减小误差的设计上建议。 这里我摘取部分内容,结合个人的理解加以整理与大家分享。更多细节可以去www.s
[单片机]
采用可编程逻辑器件设计可变通信数字信号源
可编程逻辑器件(PLD)在工业、自动控制、信号处理和日常生活等方面都发挥着愈来愈大的作用。isp(在系统可编程)器件就是PLD中的一朵奇葩,它以其良好的系统性能、较强的设计灵活性、较高的逻辑利用率和优越的E2CMOS工艺而得到了电路设计者们的青睐。本设计就是采用Lattice公司的高密度在系统可编程芯片pLSI/ispLSI1016设计的一个通信数字信号源。设计中采用两套地址总线(微机总线与isp总线)分时对两片RAM进行读写操作,并采用不断查询端口的方式进行协调控制,从而产生出满足设计要求的数字码流。 1 isp系统介绍 1.1 概述 在系统可编程器件是近几年来兴起的一种PLD器件。所谓在系统可编程,是指在用户自己
[工业控制]
基于51单片机的信号源的设计
一、引言 随着飞机供电系统的发展,交流供电已经成为目前大多数飞机的主要供电方式。目前各 *仍延续着传统“变频器—发电机—拖动台”方式的热台调试技术。其缺点是投资大,修 理成本高,能源消耗大,操作繁杂。针对以上热台调试技术的缺点,我们进行了对航空交流供电系统冷台调试技术的研究。本文所介绍的信号源,是为冷台调试系统供电以及提供检测 信号的环节。 二、信号源主要模拟信号 在研究过程中,根据航空交流供电系统和调试工艺的要求,确定系统主要模拟的信号如 下: 发电机输出三相电压信号:频率、电压可调的三相交流信号:360-440Hz/100-300V,功 率 200VA,调节精度:频率步长≤0.1Hz,电压0.1V。 网上电压信号:频率、电压可
[单片机]
信号源的基本介绍
信号源发展到今天,它的涵盖范围已非常广。我们可以按照频率范围对它进行分类:超低频(0.1m~1kHz)、音频(20Hz~20kHz)、视频(20kHz~10MHz)、射频及高频(200k~3000MHz)、微波(≥3000MHz)、光波信号源等;按工作原理可以分为: LC 源、锁相源、合成源等。 经常会看到信号源型号前面有几个字母,你知道他们代表什么意思吗?这些字母是有说头的,我来解释解释。 音频信号源(AG)、函数信号源(FG)、功率函数发生器(PFG)、脉冲信号源(PG)、任意函数发生器(AFG)、任意波形发生器(AWG)、标准高频信号源(SG)、射频信号源(RG)、电视信号发生器(TVSG)、噪声信号
[测试测量]
基于单片机和LMX2485的微波信号源发生器的设计
随着微波应用的发展,微波信号源在通信或仪器中得到了广泛的应用。信号源的合成技术按合成方法可分为直接合成和间接合成两种,按形式可分为直接式频率合成、锁相式频率合成和直接数字式频率合成 。直接式频率合成的特点是频率转换时间短、输出相位噪声小、工作频率高,并能产生任意小的频率间隔;缺点是采用了大量倍频、分频、混频和选频滤波器,不仅体积重量大、成本高,而且输出纹波、噪声和寄生频率均难以抑制。锁相式频率合成主要采用数字锁相法,其主要优点是锁相环相当于一个窄带跟踪滤波器,具有良好的窄带跟踪滤波特性和抑制输入信号的寄生干扰的能力, 避免了大量使用滤波器,有利于集成化和小型化。直接数字式频率合成的优点是分辨率高、容易做到极低的频率、控制灵活等
[单片机]