基于C8051F320 USB接口的数据采集存储电路

发布者:zhuanshi最新更新时间:2012-05-10 来源: 21ic 关键字:C8051F320  USB接口  数据采集 手机看文章 扫描二维码
随时随地手机看文章

在一些特殊的工业场合,有时需要将传感器的信号不断的实时采集和存储起来,并且到一定时间再把数据回放到PC机中进行分析和处理。在工作环境恶劣的情况下采用高性能的单片机和工业级大容量的FLASH存储器的方案恐怕就是最适当的选择了。CYGNAL公司的C8051F320SOC是一种具有8051内核的高性能单片机,运行速度为普通8051的12倍。该芯片内部528字节随机RAM和2048字节XRAM为数据缓冲和程序运行提供了充足的空间。更受欢迎的是它的串行扩展功能为当前的各种串行芯片和外部设备接口的扩展提供了极大的方便。高速的SPI硬件接口与串行FLASHRAM的无缝连接大大简化了电路板布线,而片内自带的USB接口功能使数据的存储和回放变得十分简单和快捷。在USB接口协议的支持下,使这个采集存储电路的数据回放过程简单到了极点。

本文给出的是用于大型光伏系统运行状态监测的数据采集存储电路,由于采用表面贴片工艺制作,整个电路板的宽度仅为18毫米,就像使用U盘一样方便。

采集电路硬件部分

电路的硬件结构

本系统采用了CYGNAL公司的C8051F320芯片和ATMEL公司的AT45DB321C存储芯片作为控制和存储的主要芯片。图1是信号采集系统的采集及存储系统框图。

图1基于USB数据采集及存储系统框图

从图1中可见,在采集过程中,传感器的输入模拟信号经可变增益放大器放大后送至C8051F320,经过ADC转换为数字信号。单片机片外有8个45DB321C芯片组成了一个32MB的Dataflash存储器,采集到的数据不断地通过SPI接口传送到45DB321C芯片中存储。

与其他型号芯片相比,C8051F320带有USB接口,片内的USB功能控制模块符合USB2.0规范,可在全速或低速下运行,并具有1KBUSB缓存、集成收发器,无需外部电阻。可以与PC机即插即用。当需要数据时,可将采集存储电路从现场取回,通过USB接口回放到PC机中,在LabVEIW平台上进行波形显示和数据分析处理。

8051F320与45DB321C的硬件接口

系统中C8051F320与45DB321CI采用SPI单主多从机的方式通信。引脚NSS作为从机选择线,选择存储芯片,低电平有效;SCK作为串行外设接口发送和接收数据的同步时钟信号;RDY/BUZ作为判断设备不忙或准备接收新的指令操作的信号线;SO、SI作为数据传输线。

本系统设计上考虑使用8片45DB321C芯片,最大容量达32MB,通过片选CS1~CS8分别连到各45DB321C的CS端。时钟SCK只对被选中的45DB321有效。本系统使用多片Flash芯片的设计除了提供充足的存储空间之外,还解决了一个关键问题,就是借鉴硬盘领域RAID技术的思路,通过对4片一组的Flash顺序操作实现一个基本的并行加速,解决了Flash写入速度过慢的问题,大大提高了存储性能。

具体电路如图2所示,其中8片存储器的SPI采用级联只画出一片,各自的CS片选信号由74HC138译码给出。

图2单片机与FLASH存储器的接口电路

采集电路的程序软件

采集电路的程序是指固化在C8051F320中的程序,采用c语言编写,由主程序模块、ADC数据采集、Flash数据存储和USB通信四部分组成。

主程序和ADC数据采集

主程序主要完成系统初始化状态指示操作控制和参数设置启动A/D转换等。

ADC数据采集程序将来自传感器的模拟信号转换成数字信号的。本系统中,ADC的转换是通过Timer2的自动溢出来触发的,而采集的速率可以事先通过上位机设置。

Flash数据存储程序

C8051F320芯片与Flash存储器的通信采用SPI接口方式,数据传输率为12MHz(位/秒)。本设计中,C8051F320工作在SPI主机模式,SPI总线的数据传输都将由C8051F320发起。首先对SPI相关SFRSPI0CFG寄存器和SPI0CN寄存器进行配置,使其工作在3线主模式12MHz。通信时首先用GPIO引脚来选择相应的Flash从器件,随后通过读取SPIDAT来进行读写操作。在使用Flash芯片进行读写操作时,首先要确定Flash存储器的状态。可通过写入D7H命令,读取状态寄存器判断设备是否Ready或处于Busy状态。确定状态后,可根据数据手册中的命令格式进行相关的读写以及擦除操作。

USB通信程序

固件编程是USB设备开发过程里的主要工作。固件的主要任务是初始化单片机和外设,发送USB请求,响应主机的标准设备请求。根据设备的功能分类完成各种数据交换请求。初始化编程主要完成USB控制器的初始化、端点初始化,交叉开关和I/O口初始化、系统时钟设置,控制器使能。初始化后,USB设备可随时插入主机中,主机将遵循USB协议对设备进行识别和初始化。主机识别到设备之后对设备进行配置,调用相应的驱动程序,配上上位机软件进行相关通信操作。

Siliconlab公司提供了USBXpress的开发套件。通过使用USBXpress库,大大简化了USB固件程序和PC端驱动程序的开发。USBXpress通过一系列函数实现单片机端的应用程序接口(API)。这些函数封装了USB协议的细节,使得程序开发人员不需要了解USB的过多细节即可使用USB进行数据通信(见图3)。

图3单片机与PC机的USB通信

本系统中主要用到了初始化、读、写、中断这四个函数:

初始化USB_Init(0,0xEA61,NULL,NULL,Serial,250,0x80,0x100)函数;块写函数Block_Write();块读函数Block_Read();USB中断使能函数。

USB的所有处理程序都是通过USB的中断服务程序完成的。进入USB中断后,程序调用Get_Interrupt_Source()函数获得USB中断的进入原因。然后根据不同的入口情况,来进行相应的处理。比如收到数据之后,读取相应的缓冲区内容到内存中;收到初始化命令时,复位单片机内的各个状态参数。USB通信流程图示于图4。

图4USB通信流程图[page]

PC机端软件程序

计算机端软件程序包括两部分:USB驱动程序和用户应用程序。

USB驱动程序

USB驱动程序是一个软件组件,封装了应用程序存取硬件设备的功能函数。有些设备具有相同的属性,把它们归为一组标准类别,可以定义设备类规范作为该类设备的主机驱动框架。设备类驱动程序使用相似的函数,处理不同设备间的通信,这样使设备类驱动程序的开发可以脱离设备制造商。

USB驱动程序模型一般分为五层(见图5)。

图5USB驱动程序模型

用户端若要从设备读取数据,将调用一个应用程序接口API,如OpenFile,SiUSBXp.dll实现这个API。总线驱动程序控制对总线上所有设备的访问。

本系统中,开发USB设备驱动程序的工具使用了USBXpressDevelopmentKit。主要函数如下:

SI_Open()函数;SI_Close()函数;SI_Read函数;SI_Write()函数;SI_GetNumDevices()函数;SI_CheckRXQueue()函数。

用户应用程序

本系统中,应用程序采用NI公司的LabVIEW软件进行编写,运用图形化的C语言进行软件开发,实现数据的显示、满足不同需要的分析功能以及对数据采集硬件的参数设定(见图6)。

图6回放数据波形显示界面

结语

基于C8051F320USB接口的采集存储电路把计算机技术与传统信号采集技术紧密结合起来,充分发挥PC机和单片机各自的优点,实现传感器信号的采集、存储、显示和处理。而借助USB接口的通信功能,减小了数据传输系统的复杂性。

参考文献:

1.王铁流,‘采用ADUC812实现超大容量油井数据采集与存储’,电子产品世界,2002.8A

2.潘琢金,’C8051F高速SOC单片机原理及应用’,北京航空航天大学出版社,2002年.

3.马喜顺,’高速SOC单片机C8051F’,电子产品世界,2002.5A.

关键字:C8051F320  USB接口  数据采集 引用地址:基于C8051F320 USB接口的数据采集存储电路

上一篇:基于AT89C2051单片机比较器的应用
下一篇:基于C51系列单片机的物体分级设备的测量光幕设计

推荐阅读最新更新时间:2024-03-16 12:59

基于CPCI总线的测井数据采集板卡的设计
  随着数字化与测井技术的发展,对测井系统的稳定性、可靠性、兼容性、可升级性等性能提出了更高的要求,本文提出了一种适用于测井系统设备的CPCI(Compact PCI)高性能数据采集板卡硬件设计方案,能够有效地处理来自井下的复杂信号,并通过256 MB/s 高速CPCI总线桥接到主控设备。   本板卡实现的主要功能是井下Encoder(深度脉冲)、TensiON(张力)、MMD(MagneTIc Mark Detection)和CCL(Casing Collar Locator)等信号的实时采集,采集数据在DSP中完成预处理,通过CPCI总线送入主控制器分析使用,此外,板卡还实现上电自诊断,关键数据在FRAM中的及时存储,RS
[嵌入式]
USB接口的光电隔离保护方案及其实现
  目前计算机的USB接口已经大量使用,一般每台电脑都有2到4个USB口。当一台电脑同时接多个USB外部设备时,如果这些外部设备介入了高电压干扰,就可能会烧坏电脑的USB口甚至电脑以及外设。目前电脑的几种通信接口中,MODEM口以及以太网接口由于本身具有变压器隔离所以不容易损坏,而RS-232串口也可以选用波仕的RS-232光电隔离器来进行有效的保护,只有USB以及类似的1394接口目前还没有方便的隔离保护方案。   实现原理   本文提供了一种对USB信号进行光电隔离的电路,可以使USB的接口得到保护。 图1为将USB信号(D+、D—)转换为光信号的原理框图。   USB信号检测电路   (1)将D+和D—变
[嵌入式]
基于PIC单片机USB接口数据采集系统设计
  我们把所设计的数据采集系统功能分解为三大部分:数据采集部分、数据通信部分、数据处理部分。   数据采集部分应包含:A/D转换器,时序、模式控制,数据缓冲功能。它应能接受来自主机的命令,按不同模式控制A/D转换器采集数据,暂存于数据缓冲区,再根据主机命令发给主机。这部分功能由一个单片机及接口来实现是最优方式。   数据通信部分应包含:简单、高效、通用的数据通信模式和软硬件支持。它应能在数据采集和数据处理两部分之间实现目前最好的连接和沟通。因为USB作为一种外部总线标准,用于规范电脑与外部设备的连接和通讯,并具有传输速度快,使用方便,支持热插拔,连接灵活,独立供电等优点,所以这部分功能采用USB接口连接最好。   数据处理部分应
[单片机]
基于PIC单片机<font color='red'>USB接口</font>的<font color='red'>数据采集</font>系统设计
数据采集系统基于AD转换芯片AD0809
提起LABVIEW,就不能不涉及到数据采集和控制。 曾经在网上辩论过LV是不是通用编程语言,NI的创始人的一篇文章的标题就是“LV是通用语言吗”,这的确很难说,说它是通用语言,因为它的确具备了通用语言的基本能力,但是只能说是基本的,但是对很多VC容易实现的东西,在LV中却是个问题,尤其是系统相关的一些操作,所以,我个人更愿意认为,LABVIEW是倾向于测量和控制的硬件工程师的语言,它是语言,而不是一般意义上的专用软件,所以,LABVIEW逐渐成为工科院校学生的基本课程。 数据采集是LV最擅长的领域,对于开发过 单片机 的人来说,数据采集是再熟悉不过的了,如果想真正了解数据采集,就必须从AD,DA,COUNTER等转换芯片开始,数据
[单片机]
<font color='red'>数据采集</font>系统基于AD转换芯片AD0809
基于ADSP-TS201S的声雷达信号采集系统
在声雷达系统中,发射机定向发出不同频率的声信号,随后接收不同距离上的回波信号,利用回波中频率的偏离可以测定风速、风向随高度的变化。系统的多通道采样数据量接近500k×32b/s,一帧时间(约2.7s)内要求处理1100兆条指令,其大数据量和要求实时处理的特性对信号采集处理系统的设计提出了很高的要求,本文介绍的基于美国模拟器件公司的DSP ADSP-TS201S和ADC AD7864的信号采集系统能够满足这些要求。 系统的设计 1 系统功能模块划分 声雷达信号采集系统主要由信号采集、信号处理、电源和时钟四部分组成,如图1所示。信号采集模块由CPLD和4片ADC组成,负责完成A/D转换;转换后的数据送至信号处理模块,
[测试测量]
基于ADSP-TS201S的声雷达信号采集系统
嵌入式超声波测距系统的实现方案
  目前所研究的超声波测距传感器测距范围普遍较小,线性度和重复性较差。文中所提出的研究方法能很好的解决这2 个问题,在保证线性度和重复性均不低于1. 5‰的前提下,测量范围达到了5 m 以上。为了增大超声波发射功率和准确接收回波信号,在分析超声波测距误差原因和考虑软、硬件成本的基础上,提出了一种以C8051F320 微控制器、反激变换器和专用集成电路PW0268 为核心器件的超声波测距系统及其硬件和软件的设计方案。系统中还集成了声速的温度补偿、串行输出和LCD 显示等功能,能实时修正超声速度和显示测量值。实验结果表明,该超声波测距系统具有测量数据准确,线性度高、重复性好、迟滞小、成本低等优点,可广泛应用于工业中非接触测距场所。
[单片机]
嵌入式超声波测距系统的实现方案
基于C8051F320 USB接口数据采集存储电路
摘要: 介绍采用C8051F320 SOC与AM45DB321构成数据采集存储系统的设计方案。 关键词: 数据采集;USB接口;存储电路;SOC 在一些特殊的工业场合,有时需要将传感器的信号不断的实时采集和存储起来,并且到一定时间再把数据回放到PC机中进行分析和处理。在工作环境恶劣的情况下采用高性能的单片机和工业级大容量的FLASH存储器的方案恐怕就是最适当的选择了。CYGNAL公司的C8051F320 SOC是一种具有8051内核的高性能单片机,运行速度为普通8051的12倍。该芯片内部528字节随机RAM和2048字节XRAM为数据缓冲和程序运行提供了充足的空间。更受欢迎的是它的串行扩展功能为当前的各种串行芯片和外部设备接
[缓冲存储]
austriamicro新推出低功率ADC
austriamicrosystems新近推出AS1530/31系列全差分12位、8通道低功率模数转换器,部分参考电压为2.5V。AS1530/31系列适合电池供电产品和便携式数据采集系统使用,如远程传感器和笔式数字转换仪,该设备功率低,速率高(400ksps),有四个模拟输入模式,动态性能优异(SINAD大于70dB),它采用无铅TSSOP-20封装。 AS1530使用4.5V至5.5V电源,速度达400ksps时电流消耗仅为2.8mA。AS1531使用2.7V至3.6V电源,传输速率300ksps,电流消耗为2.2mA。它们的软件节电功能可将电流消耗降至0.4mA,进一步降低了功耗,当采样速率为10ksps,每个通道为27.
[新品]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved