一种简单实用的测角码盘设计方案

发布者:RadiantJourney最新更新时间:2012-06-29 来源: 单片机及嵌入式系统应用 关键字:测角码盘  码盘信号  数据处理 手机看文章 扫描二维码
随时随地手机看文章

测控系统中,经常用到采集各种角度参数或对转动机构进行测速的角度传感器。目前,市场上一些具有成熟技术的角度传感器有自增角机、电位器、码盘、霍尔元件和齿轮计数器等。这些产品中,有的精度很高,但价格昂贵,有的价格便宜,但结构复杂,往往难于同时满足结构简单、价格便宜的要求。本文介绍一种光电码盘设计方案,硬件结构非常简单、成本价格十分便宜,而且稳定性好、使用寿命长,又能满足多数情况下的精度要求。

1 工作原理

1.1 原始信号的产生

(1)信号产生原理

图1是码盘产生原始信号的原理示意图。

本码盘用于采集信号的器件是一对发光管和接收管,每个管内有两套收发装置。其功能实现过程为:在发光管和接收管之间放一圆形黑白相间且宽度相同的编码胶片,使三者分别处于相互平行的平面内,将发光管和接收管中心对正,并使编码胶片可以绕其轴心旋转。上电后,发光管会连续不断地发射信号,但由于胶片是黑白相同的,所以当黑色部分正对发光管时,发光管发出的信号将被阻挡,使接收管接收不到信号;而当白色部分正对发光管时,发光管发出的信号将透过胶片射到接收管上。这样,在接收端就得到两路连续变化的正弦波。

(2)方向判别原理

图2为原理示意图。

编码胶片宽度是收发装置距离的两倍,两收发装置位置关系应满足B=(0.7n+0.35)+A,图中n=0。

同理,当胶片向右转动时,A、B信号变化恰好相反。这样,通过A、B信号不同的变化规律实现对方向的判别。

1.2 信号处理

图3是码盘信号处理电路图。

    该电路的主要任务是将产生的原始模拟信号转换为数字信号,即模数转换。由传感器产生的0V为振荡中心的正弦波信号,经跟随器处理后转换为以+2.5V为振荡中心的正弦波信号。通过调节电位器,使其波形达到最佳状态,然后,经过大器将正弦波信号放大10倍。此时,由于放大的拉伸作用,被钳位在0~5V之间的信号已具有非常陡的上升沿和下降沿,最后经施密特触发器整形后,以方波形式输给单片机。其波形关系如图4所示。[page]

1.3 信号控制及传输

图5为控制传输电路图。

    这部分主要通过软件编程实现对信号的处理。硬件结构包括信号处理芯片AT89C2051、信号传输芯片75176和相应的复位电路。其中,复位电路采用由MAX813L芯片组成的看门狗电路。正常工作时,由89C2051为其定时提供触发信号,不产生复位;若发生错误,则在距上次触发信号1.6s后,该电路会自动产生复位信号,对89C2051进行复位。

信号处理电路产生的方波信号A、B由端口Px.m和Px.n输入,然后通过软件比较端口现在时刻和下一时刻的状态变化,实现功能选择。最后,通过端口Px.k控制的串行通信 芯片75176传给主控板,实现信号的控制传输。

2 软件设计

2.1 状态编码

由图4可知,A、B信号的相位相差1/4个周期,所以可得图6所示的状态变换图。

若规定顺序时针方向计数器为加,逆时针方向计数器为减。

这样,通过不同状态值的变换就可对数据进行加操作、减操作和不操作,从而实现对信号的连续处理功能。

2.2 软件编程

软件流程如图7所示。

主要可分为以下几部分。

①上电开始后,软件首先对AT89C2051的内部寄存器和RS422串行口进行初始化。通过对专用寄存器的赋值,设定工作状态和通信 方式,串行通信的波特率为9600b/s。

②初始化完成后,软件将检测端口Px.m和Px.n的状态,程序用两位记录端口相邻状态值,左一位代表前一状态,右一位代表当前状态,然后通过带进位的左循环指令进行状态更新。通过状态值变化,查表2,跳转进入执行程序。

③在执行程序中,可根据不同需要设定上下限进行数据处理。同时,由于处理程序很少,执行时间短,串行通信部分可采用查询方式完成。

3 应用实例

把该设计应用到笔者开发的项目—某型转达训练系统上。采用图3和图5所示的电路设计方案,用该码盘连续采集空中飞行目标的方位角和高低角。[page]

以高低角采集为例,系统指标要求高低角变化范围是-50~1450密位,设计中采用的编码胶片精度是480单位/圈。如文中图1所示,由于编码胶片是圆形的,且一个黑色或一个魄区间均可称为一个单位,所以计算其精度时用每圈包含的黑白区间个数确定,因此用单位/圈。对高低角增减判断主要通过软件编程实现,这段程序如下。

    MAIN1:MOV A,R4 ;读骊盘A、B信号到码盘状态暂存器R4

MOV C,P3.3 ;P3.3为A信号采集端口,

RLCA ;用于A信号新旧状态转换

MOV C,P3.5 ;P3.5为B信号采集端口,

RLCA ;用于B信号新旧状态转换

MOV R4,A

ANL A,#0FH ;计算散转地址

MOV B,#03H

MUL AB

MOV DPTR,#TIM1;TIM1为状态真值表首地址

LJMP @A+DPTR ;散转至真值表

然后,通过查真值表状态值,转入处理程序实现角度的加减。若出现丢码现象,说明单片机采集速度低于码盘转动速度,可根据实际情况更换采集芯片或降低码盘转动速度。同时,通过规定编码胶片每旋转个单位对应的角度值变化1密位(密位是军事用语,一种更精确的划分角度方法,一周为360度,6000密位)和相应的单位转换。在软件中确定了码盘采集量的上下限和单位变化量,从而限定了高低角的变化范围,也达到了采集精度要求。

    通过示波器检测硬件电路单个信号波形,得到图8所示关系。

说明实际应用电路中各级输出信号与原理电路的设计完全相符,软件采集的信号为真实值。

经实践检验,该方案设计的码盘能准确的采集目标参数,使系统对目标进行连续跟踪。

本文介绍的测角码盘设计方案使用的都是容易购买的简单器件,且软件编程任务量少。此外,可通过在旋转轴上安装微动开关实现码盘计数的快慢变化,还可通过采用绝对式编码胶片进一步提高采集精度。

关键字:测角码盘  码盘信号  数据处理 引用地址:一种简单实用的测角码盘设计方案

上一篇:关于在 KEIL C51 中嵌入汇编以及C51与A51间的相互调用
下一篇:有关实时钟读取的偏方

推荐阅读最新更新时间:2024-03-16 13:02

DDR5 时代来临,新挑战不可忽视
在人工智能(AI)、机器学习(ML)和数据挖掘的狂潮中,我们对数据处理的渴求呈现出前所未有的指数级增长。面对这种前景,内存带宽成了数字时代的关键“动脉”。其中,以双倍数据传输速率和更高的带宽而闻名的 DDR(Double Data Rate)技术作为动态随机存取存储器(DRAM)的重要演进,极大地推动了计算机性能的提升。从 2000 年第一代 DDR 技术诞生,到 2020 年 DDR5,每一代 DDR 技术在带宽、性能和功耗等各个方面都实现了显著的进步。 如今,无论是 PC、笔电还是人工智能,各行业正在加速向 DDR5 新纪元迈进。今年,生成式 AI 市场蓬勃发展,用于大型模型应用的 AI 服务器大力推动了对 DDR5
[嵌入式]
DDR5 时代来临,新挑战不可忽视
SPI-4接口的数据处理
    从图1所示的系统框图中可以看出内部处理是相当复杂的,为了让读者更好地了解接口的设计过程,笔者在框图中划分了内部处理模块,即分为LO接口处理模块、用户FIFO和参数配置3大部分。其中最关键的部分是I/O接口处理,它把高速数据在FPGA内部利用Virtex-5器件内部ISERDES、OSERDES和IODELAY资源进行了串并转换和DPA(动态相位对齐)。   图1 Xilinx SPL-4解决方案框图   (1)Sink Core I/0接口设计   对于数据通道,Sink Core的接收数据在FPGA I/O内部通过ISERDES串并转换后,把数据速率降低供内部处理。这样做的目的是降低了FPGA内部系统频率,
[嵌入式]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
  • ARM裸机篇--按键中断
    先看看GPOI的输入实验:按键电路图:GPF1管教的功能:EINT1要使用GPF1作为EINT1的功能时,只要将GPFCON的3:2位配置成10就可以了!GPF1先配 ...
  • 网上下的--ARM入门笔记
    简单的介绍打今天起菜鸟的ARM笔记算是开张了,也算给我的这些笔记找个存的地方。为什么要发布出来?也许是大家感兴趣的,其实这些笔记之所 ...
  • 学习ARM开发(23)
    三个任务准备与运行结果下来看看创建任务和任运的栈空间怎么样的,以及运行输出。Made in china by UCSDN(caijunsheng)Lichee 1 0 0 ...
  • 学习ARM开发(22)
    关闭中断与打开中断中断是一种高效的对话机制,但有时并不想程序运行的过程中中断运行,比如正在打印东西,但程序突然中断了,又让另外一个 ...
  • 学习ARM开发(21)
    先要声明任务指针,因为后面需要使用。 任务指针 volatile TASK_TCB* volatile g_pCurrentTask = NULL;volatile TASK_TCB* vol ...
  • 学习ARM开发(20)
  • 学习ARM开发(19)
  • 学习ARM开发(14)
  • 学习ARM开发(15)
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved