C51实现PID算法代码

发布者:SerendipityDawn最新更新时间:2012-07-03 来源: 21ic 关键字:C51  PID算法 手机看文章 扫描二维码
随时随地手机看文章

真正要用PID算法的时候,发现书上的代码在我们51上来实现还不是那么容易的事情。简单的说来,就是不能直接调用。仔细分析你可以发现,教材上的、网上现行的PID实现的C语言代码几乎都是用浮点型的数据来做的,可以想象,如果我们的计算使用浮点数据,那我们的51单片机来运行的话会有多痛苦。
 
所以,本人自己琢磨着弄了一个整型变量来实现了PID算法,由于是用整型数来做的,所以也不是很精确,但是对于很多的使用场合,这个精度也够了。关于系数和采样电压全部是放大10倍处理的。所以精度不是很高,但是也不是那么低,大部分的场合都够用了。实在觉得精度不够,可以再放大10倍或者100倍处理,但是要注意不超出整个数据类型的范围就可以了。
 
本人做的是带死区控制的PID算法。
 
具体的参考代码参见下面:
typedef struct PIDValue
{
    uint32 Ek_Uint32[3];         //差值保存,给定和反馈的差值
    uint8  EkFlag_Uint8[3];     //符号,1则对应的Ek[i]为负数,0为对应的Ek[i]为正数
    uint8   KP_Uint8;
 uint8   KI_Uint8;
 uint8   KD_Uint8;
 uint8   B_Uint8;     //死区电压
 
 uint8   KP;      //显示修改的时候用
 uint8   KI;      //
 uint8   KD;      //
 uint8   B;       //
 uint16  Uk_Uint16;    //上一时刻的控制电压
}PIDValueStr;
 
PIDValueStr xdata PID;
/*******************************
**PID = Uk + (KP*E(k) - KI*E(k-1) + KD*E(k-2));
********************************/
void    PIDProcess(void)
{
 uint32 idata Temp[3];  //
 uint32 idata PostSum;  //正数和
 uint32 idata NegSum;   //负数和
 Temp[0] = 0;
    Temp[1] = 0;
    Temp[2] = 0;
 PostSum = 0;
 NegSum = 0;
 if( ADPool.Value_Uint16[UINADCH] > ADPool.Value_Uint16[UFADCH] )  //给定大于反馈,则EK为正数
 {
     Temp[0] = ADPool.Value_Uint16[UINADCH] - ADPool.Value_Uint16[UFADCH];   //计算Ek[0]
        if( Temp[0] > PID.B_Uint8 )
        {
      //数值移位
            PID.Ek_Uint32[2] = PID.Ek_Uint32[1];
            PID.Ek_Uint32[1] = PID.Ek_Uint32[0];
            PID.Ek_Uint32[0] = Temp[0];
            //符号移位
   PID.EkFlag_Uint8[2] = PID.EkFlag_Uint8[1];
   PID.EkFlag_Uint8[1] = PID.EkFlag_Uint8[0];
   PID.EkFlag_Uint8[0] = 0;                       //当前EK为正数
            Temp[0] = (uint32)PID.KP_Uint8 * PID.Ek_Uint32[0];    // KP*EK0
            Temp[1] = (uint32)PID.KI_Uint8 * PID.Ek_Uint32[1];    // KI*EK1
            Temp[2] = (uint32)PID.KD_Uint8 * PID.Ek_Uint32[2];    // KD*EK2
        }
 }
 else   //反馈大于给定
 {
     Temp[0] = ADPool.Value_Uint16[UFADCH] - ADPool.Value_Uint16[UINADCH];   //计算Ek[0]
        if( Temp[0] > PID.B_Uint8 )
        {
      //数值移位
            PID.Ek_Uint32[2] = PID.Ek_Uint32[1];
            PID.Ek_Uint32[1] = PID.Ek_Uint32[0];
            PID.Ek_Uint32[0] = Temp[0];
            //符号移位
   PID.EkFlag_Uint8[2] = PID.EkFlag_Uint8[1];
   PID.EkFlag_Uint8[1] = PID.EkFlag_Uint8[0];
   PID.EkFlag_Uint8[0] = 1;                       //当前EK为负数
            Temp[0] = (uint32)PID.KP_Uint8 * PID.Ek_Uint32[0];    // KP*EK0
            Temp[1] = (uint32)PID.KI_Uint8 * PID.Ek_Uint32[1];    // KI*EK1
            Temp[2] = (uint32)PID.KD_Uint8 * PID.Ek_Uint32[2];    // KD*EK2
        }
 }[page]

/*以下部分代码是讲所有的正数项叠加,负数项叠加*/
    if(PID.EkFlag_Uint8[0]==0)
    {
        PostSum += Temp[0];   //正数和
 }
    else
 {
        NegSum += Temp[0];    //负数和
 }                         // KP*EK0
    if(PID.EkFlag_Uint8[1]!=0)      
    {
        PostSum += Temp[1];   //正数和
 }
 else
 {
        NegSum += Temp[1];    //负数和
 }                         // - kI * EK1
    if(PID.EkFlag_Uint8[2]==0)
    {
        PostSum += Temp[2];   //正数和
    }
 else
 {
        NegSum += Temp[2];    //负数和
 }                         // KD * EK2
    PostSum += (uint32)PID.Uk_Uint16;        // 
    if( PostSum > NegSum )             // 是否控制量为正数
    {
        Temp[0] = PostSum - NegSum;
        if( Temp[0] < (uint32)ADPool.Value_Uint16[UMAXADCH] )   //小于限幅值则为计算值输出
  {
            PID.Uk_Uint16 = (uint16)Temp[0];
  }
  else
  {
            PID.Uk_Uint16 = ADPool.Value_Uint16[UMAXADCH];    //否则为限幅值输出
     }
    }
    else               //控制量输出为负数,则输出0
    {
        PID.Uk_Uint16 = 0;
    }

 

关键字:C51  PID算法 引用地址:C51实现PID算法代码

上一篇:基于STC89C516RD+单片机的手持式电子鼻的设计
下一篇:16X2字符型液晶显示模块的驱动

推荐阅读最新更新时间:2024-03-16 13:02

Keil C51使用教程---C51 vs 标准C(三)
深入理解并应用C51对标准ANSIC的扩展是学习C51的关键之一。因为大多数扩展功能都是直接针对8051系列CPU硬件的。大致有以下8类: ●8051存储类型及存储区域 ●存储模式 ●存储器类型声明 ●变量类型声明 ●位变量与位寻址 ●特殊功能寄存器(SFR) ●C51指针 ●函数属性 具体说明如下(8031为缺省CPU)。 第一节 Keil C51扩展关键字 C51 V4.0版本有以下扩展关键字(共19个): _at_ idata sfr16 alien interrupt small bdata large _task_
[单片机]
C51:串口程序
一、程序功能 pc向c51发送字符串不大于5个字符,c51将收到的字符前端加 S ,末端加 N ,回传给pc. 二、关键点 1、c51串口初始化步骤: 定时器设置,确定波特率发生器,定时器分配。 根据波特率,c51频率计算时间常数。 串口设置。 中断设置 2、定时器时间常数计算方法: 从晶振频率到波特率流程如下 晶振- 12分频- 定时器输入,8位计数,TH,TL控制定时器溢出时间,或输入分频值,例TH=0xfd,对输入3分频- 2分频(默认SMOD=0,2分频。如SMOD=1不分频)- 16分频- 波特率。 3、中断程序格式 void 函数名() interrupt n {函数体} n=0,外部中断0 n
[单片机]
C51入门小项目——双向路口交通信号灯
实现功能 初始状态东西南北全为红灯(5S); 东西红灯、南北绿灯(10S)——东西红灯、南北绿灯转黄灯闪烁2s——南北红灯、东西绿灯(10S) ——南北红灯、东西绿灯转黄灯闪烁2s; 循环运行2;行人红绿灯也会同步亮灭变化。 数码管显示各路口的灯亮时间并作每秒减“1”操作; 当人行道绿灯亮时,蜂鸣器提醒行人过马路。 当出现紧急情况时,手动按紧急按钮使各方向灯全为红(8s),处理后恢复正常信号。 仿真示意图 若对蜂鸣器有疑问,请访问:链接: 蜂鸣器驱动原理及电路设计. 代码实现 入门C51以来的第一个小项目,主要是物理逻辑的考虑,主要运用到以下小知识点: LED闪烁、动态数码管显示、蜂鸣器、按键、51单片机的定时器
[单片机]
<font color='red'>C51</font>入门小项目——双向路口交通信号灯
如何正确的使用C51单片机中的位域
定义这样的结构: typedef struct { uchar DC0_ALA:1; //电源0告警 uchar DC1_ALA:1; //电源1告警 uchar AC_ALA:1; //停电告警 uchar UN_H_ALA:1; //同频信道机失锁告警 uchar UN_L_ALA:1; //异频信道机失锁告警 uchar FAR_ALA:1; //远端通讯故障告警 uchar OPEN_ALA:1; //门襟告警 uchar x:1; }ALARM;//系统告警结构定义 定义变量并初始化: idata ALARM old_alarm={0,0,0,0,0,0,0,0}; 在main()函数中这样应用位域: if(ol
[单片机]
51单片机的4x4矩阵键盘扫描例程(C51)
//4x4矩阵键盘扫描例程(C51) //使用P0口上的LED灯显示4x4键盘扫描得到的键值 // //广西民大物电学院 李映超 2010.4.19 #include reg52.h //52系列单片机头文件 #define uchar unsigned char #define uint unsigned int #define key_4x4_port P3 //定义4x4键盘使用的单片机端口 uchar key; //4x4键盘扫描所得的键值保存到这里 void delayms(uint xms); //声明延时子函数 void key_4x4_s
[单片机]
IO口模拟SPI通信C51程序
/************************** 文件所用资源 1.端口:P0.4,P0.5,P0.6,P0.7 2.调用delay_ms函数 **************************/ /************************* 模拟SPI接口I/O定义 *************************/ sbit spi_cs=P0^1; sbit spi_di=P0^2; sbit spi_clk=P0^3; sbit spi_do=P0^4; /******************************* 向SPI器件写入一个字节数据 *****************
[单片机]
浅谈单片机的按键去抖问题
简介:本文是我用C51语言写的一个按键去抖程序,大家定会问为什么要去抖呢,说到这里,我要说下去现在去抖的方法有几种,去抖有两种方式,一种是硬件去抖,一种是软件去抖,硬件去抖是加一个电容就可以了,这要加大成本,和电路的复杂性。我们在开发C51的时候一般最常用的是软件去抖。下面看这个矩阵键盘的去抖程序吧。 #include reg52.h #include intrins.h #define uchar unsigned char sfr KeyPort=0x90;//#define KeyPort P1 -----行在P1口低四位 sbit Key_C1=P1^4; //第1列接P1.4 sbit Key_C2=P1^5;
[单片机]
C51实现PID算法代码
真正要用 PID算法的时候,发现书上的代码在我们51上来实现还不是那么容易的事情。简单的说来,就是不能直接调用。仔细分析你可以发现,教材上的、网上现行的PID实现的C语言代码几乎都是用浮点型的数据来做的,可以想象,如果我们的计算使用浮点数据,那我们的51单片机来运行的话会有多痛苦。 所以,本人自己琢磨着弄了一个整型变量来实现了PID算法,由于是用整型数来做的,所以也不是很精确,但是对于很多的使用场合,这个精度也够了。关于系数和采样电压全部是放大10倍处理的。所以精度不是很高,但是也不是那么低,大部分的场合都够用了。实在觉得精度不够,可以再放大10倍或者100倍处理,但是要注意不超出整个数据类型的范围就可以了。 本人做的是带死区
[单片机]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved