单片机系统软件如何抗干扰的方法

发布者:工号待定最新更新时间:2013-02-17 来源: dzsc关键字:单片机系统  抗干扰  MCS-51 手机看文章 扫描二维码
随时随地手机看文章

     在提高硬件系统抗干扰能力的同时,软件抗干扰以其设计灵活、节省硬件资源、可靠性好越来越受到重视。下面以MCS-51单片机系统为例,对微机系统软件抗干扰方法进行研究。

  1  软件抗干扰方法的研究

  在工程实践中,软件抗干扰研究的内容主要是: 一、消除模拟输入信号的嗓声(如数字滤波技术);二、程序运行混乱时使程序重入正轨的方法。本文针对后者提出了几种有效的软件抗干扰方法。

  1.1 指令冗余

  CPU取指令过程是先取操作码,再取操作数。当PC受干扰出现错误,程序便脱离正常轨道“乱飞”,当乱飞到某双字节指令,若取指令时刻落在操作数上,误将操作数当作操作码,程序将出错。若“飞” 到了三字节指令,出错机率更大。

  在关键地方人为插入一些单字节指令,或将有效单字节指令重写称为指令冗余。通常是在双字节指令和三字节指令后插入两个字节以上的NOP。这样即使乱飞程序飞到操作数上,由于空操作指令NOP的存在,避免了后面的指令被当作操作数执行,程序自动纳入正轨。

  此外,对系统流向起重要作用的指令如RET、 RETI、LCALL、LJMP、JC等指令之前插入两条NOP,也可将乱飞程序纳入正轨,确保这些重要指令的执行。

  1.2 拦截技术

  所谓拦截,是指将乱飞的程序引向指定位置,再进行出错处理。通常用软件陷阱来拦截乱飞的程序。因此先要合理设计陷阱,其次要将陷阱安排在适当的位置。

  1.2.1 软件陷阱的设计

  当乱飞程序进入非程序区,冗余指令便无法起作用。通过软件陷阱,拦截乱飞程序,将其引向指定位置,再进行出错处理。软件陷阱是指用来将捕获的乱飞程序引向复位入口地址0000H的指令。通常在EPROM中非程序区填入以下指令作为软件陷阱:

  NOP

  NOP

  LJMP 0000H

  其机器码为0000020000。[page]

  1.2.2 陷阱的安排

  通常在程序中未使用的EPROM空间填0000020000。最后一条应填入020000,当乱飞程序落到此区,即可自动入轨。在用户程序区各模块之间的空余单元也可填入陷阱指令。当使用的中断因干扰而开放时,在对应的中断服务程序中设置软件陷阱,能及时捕获错误的中断。如某应用系统虽未用到外部中断1,外部中断1的中断服务程序可为如下形式:

  NOP

  NOP

  RETI

  返回指令可用“RETI”,也可用“LJMP 0000H”。如果故障诊断程序与系统自恢复程序的设计可靠、 完善,用“LJMP 0000H”作返回指令可直接进入故障诊断程序,尽早地处理故障并恢复程序的运行。

  考虑到程序存贮器的容量,软件陷阱一般1K空间有2-3个就可以进行有效拦截。

  1.3 软件“看门狗”技术

  若失控的程序进入“死循环”,通常采用“看门狗”技术使程序脱离“死循环”。通过不断检测程序循环运行时间,若发现程序循环时间超过最大循环运行时间,则认为系统陷入“死循环”,需进行出错处理。

  “看门狗”技术可由硬件实现,也可由软件实现。 在工业应用中,严重的干扰有时会破坏中断方式控制字,关闭中断。则系统无法定时“喂狗”,硬件看门狗电路失效。而软件看门狗可有效地解决这类问题。

  笔者在实际应用中,采用环形中断监视系统。用定时器T0监视定时器T1,用定时器T1监视主程序,主程序监视定时器T0。采用这种环形结构的软件“看门狗”具有良好的抗干扰性能,大大提高了系统可靠性。对于需经常使用T1定时器进行串口通讯的测控系统,则定时器T1不能进行中断,可改由串口中断进行监控(如果用的是MCS-52系列单片机,也可用T2代替T1进行监视)。这种软件“看门狗”监视原理是:在主程序、T0中断服务程序、T1中断服务程序中各设一运行观测变量,假设为MWatch、T0Watch 、T1Watch,主程序每循环一次,MWatch加1,同样T0、T1中断服务程序执行一次,T0Watch、 T1Watch加1。在T0中断服务程序中通过检测T1Watch的变化情况判定T1运行是否正常,在T1中断服务程序中检测MWatch的变化情况判定主程序是否正常运行,在主程序中通过检测T0Watch的变化情况判别T0是否正常工作。若检测到某观测变量变化不正常,比如应当加1而未加1,则转到出错处理程序作排除故障处理。当然,对主程序最大循环周期、定时器T0和T1定时周期应予以全盘合理考虑。限于篇幅不赘述。

  2  系统故障处理、自恢复程序的设计

  单片机系统因干扰复位或掉电后复位均属非正常复位,应进行故障诊断并能自动恢复非正常复位前的状态。

  2.1 非正常复位的识别

  程序的执行总是从0000H开始,导致程序从 0000H开始执行有四种可能:一、系统开机上电复位;二、软件故障复位;三、看门狗超时未喂狗硬件复位; 四、任务正在执行中掉电后来电复位。四种情况中除第一种情况外均属非正常复位,需加以识别。

  2.1.1 硬件复位与软件复位的识别

  此处硬件复位指开机复位与看门狗复位,硬件复位对寄存器有影响,如复位后PC=0000H, SP=07H,PSW=00H等。而软件复位则对SP、SPW无影响。故对于微机测控系统,当程序正常运行时,将SP设置地址大于07H,或者将PSW的第5位用户标志位在系统正常运行时设为1。那么系统复位时只需检测PSW.5标志位或SP值便可判此是否硬件复位。图1是采用PSW.5作上电标志位判别硬、软件复位的程序流程图。


图1 硬、软件复位识别流程图

  此外,由于硬件复位时片内RAM状态是随机的,而软件复位片内RAM则可保持复位前状态,因此可选取片内某一个或两个单元作为上电标志。设 40H用来做上电标志,上电标志字为78H,若系统复位后40H单元内容不等于78H,则认为是硬件复位,否则认为是软件复位,转向出错处理。若用两个单元作上电标志,则这种判别方法的可靠性更高。[page]

  2.1.2 开机复位与看门狗故障复位的识别

  开机复位与看门狗故障复位因同属硬件复位, 所以要想予以正确识别,一般要借助非易失性RAM或者EEROM。当系统正常运行时,设置一可掉电保护的观测单元。当系统正常运行时,在定时喂狗的中断服务程序中使该观测单元保持正常值(设为 AAH),而在主程中将该单元清零,因观测单元掉电可保护,则开机时通过检测该单元是否为正常值可判断是否看门狗复位。

  2.1.3 正常开机复位与非正常开机复位的识别

  识别测控系统中因意外情况如系统掉电等情况引起的开机复位与正常开机复位,对于过程控制系统尤为重要。如某以时间为控制标准的测控系统,完成一次测控任务需1小时。在已执行测控50分钟的情况下,系统电压异常引起复位,此时若系统复位后又从头开始进行测控则会造成不必要的时间消耗。因此可通过一监测单元对当前系统的运行状态、系统时间予以监控,将控制过程分解为若干步或若干时间段,每执行完一步或每运行一个时间段则对监测单元置为关机允许值,不同的任务或任务的不同阶段有不同的值,若系统正在进行测控任务或正在执某时间段,则将监测单元置为非正常关机值。那么系统复位后可据此单元判系统原来的运行状态,并跳到出错处理程序中恢复系统原运行状态。

  2.2 非正常复位后系统自恢复运行的程序设计

  对顺序要求严格的一些过程控制系统,系统非正常复位否,一般都要求从失控的那一个模块或任务恢复运行。所以测控系统要作好重要数据单元、参数的备份,如系统运行状态、系统的进程值、当前输入、输出的值,当前时钟值、观测单元值等,这些数据既要定时备份,同时若有修改也应立即予以备份。

  当在已判别出系统非正常复位的情况下,先要恢复一些必要的系统数据,如显示模块的初始化、片外扩展芯片的初始化等。其次再对测控系统的系统状态、运行参数等予以恢复,包括显示界面等的恢复。之后再把复位前的任务、参数、运行时间等恢复, 再进入系统运行状态。

  应当说明的是,真实地恢复系统的运行状态需 要极为细致地对系统的重要数据予以备份,并加以数据可靠性检查,以保证恢复的数据的可靠性。

  其次,对多任务、多进程测控系统,数据的恢复需考虑恢复的次序问题,笔者实际应用的数据恢复过程流程图如图2所示。


图2 系统自恢复程序流程图

  图中恢复系统基本数据是指取出备份的数据覆盖当前的系统数据。系统基本初始化是指对芯片、显示、输入输出方式等进行初始化,要注意输入输出的初始化不应造成误动作。而复位前任务的初始化是指任务的执行状态、运行时间等。

  3  结束语

  对于软件抗干扰的一些其它常用方法如数字滤波、RAM数据保护与纠错等,限于篇幅,本文未作讨论。在工程实践中通常都是几种抗干扰方法并用,互相补充 完善,才能取得较好的抗干扰效果。从根本上来说,硬件抗干扰是主动的,而软件是抗干扰是被动的。细致周到地分析干扰源,硬件与软件抗干扰相结合,完善系统监控程序,设计一稳定可靠的单片机系统是完全可行的。

关键字:单片机系统  抗干扰  MCS-51 引用地址:单片机系统软件如何抗干扰的方法

上一篇:CPU与单片机的复位电路的作用及基本复位方式
下一篇:AT89C51单片机在LED显示屏控制电路设计中的应用

推荐阅读最新更新时间:2024-03-16 13:18

总结单片机软件抗干扰的几种办法
简介:在提高硬件系统抗干扰能力的同时,软件抗干扰以其设计灵活、节省硬件资源、可靠性好越来越受到重视。下面以MCS-51单片机系统为例,对微机系统软件抗干扰方法进行研究。 1、软件抗干扰方法的研究 在工程实践中,软件抗干扰研究的内容主要是:一、消除模拟输入信号的噪声(如数字滤波技术);二、程序运行混乱时使程序重入正轨的方法。本文针对后者提出了几种有效的软件抗干扰方法。 1.1 指令冗余 CPU取指令过程是先取操作码,再取操作数。当PC受干扰出现错误,程序便脱离正常轨道“乱飞”,当乱飞到某双字节指令,若取指令时刻落在操作数上,误将操作数当作操作码,程序将出错。若“飞”到了三字节指令,出错机率更大。 在关键地方人为插
[单片机]
基于CAN总线的汽车仪表软件实现方案
    引言     随着汽车上的电子装置越来越多,汽车网络应运而生,控制器局域网(CAN,Controller Area Network)开始大量应用与汽车之上。如何利用汽车网络中的信息,以便于司机与乘客了解车辆信息,是一项需要展开的研究。本研究从CAN总线获取汽车仪表板所需的数据,并在液晶显示屏上动态显示,这一系列任务在硬件支持的情况下全部由高级语言编程实现。     1、CAN总线技术     目前存在多种汽车网络协议,CAN总线技术属于现场总线范畴,CAN是控制局域网络(Control Area Network)的简称,最早由德国BOSCH公司推出,用于汽车内部测量与执行部件之间的数据通信,其纵向规范现已被ISO国际标准组织
[嵌入式]
MCS-51单片机的4个I/O口
8051单片机的4个I/O口在结构上是基本相同的,但又各具特点。这四个端口都是8位双向口,每个端口都包括一个锁存器、一个输出驱动器和输入缓冲器。在无片外扩展存储器的系统中,这四个端口的每一位都可以作为双向通用I/O端口使用。在作为一般的通用I/O输入时,都必须先向锁存器写入 1 ,使输出驱动场效应管FET截止,以免误读数据。各自特点如下: (1)P0口为双向8位三态I/O口,它既可作为通用I/O口,又可作为外部扩展时的数据总线及低8位地址总线的分时复用口。作为通用I/O口时,输出数据可以得到锁存,不需外接专用锁存器;输入数据可以得到缓冲,增加了数据输入的可靠性。每个引脚可驱动8个TTL负载。 (2)P1口为8位准双向I/O口,内
[单片机]
单片机系统的硬件主要由哪些功能部件组成
答:单片机系统的硬件由单片机芯片和外部设备组成c 单片机芯片则包含微处理器(CPU)、存储器(存放程序指令或数据的ROM、RAM等),输入/输出口(I/O口)及其他功能部件如定时/计数器、中断系统等,它们通过地址总线(AB)、数据总线(DB)和控制总线(CB)连接起来。 外部设备即单片机系统的输入/输出设备,简称I/O设备。输入设备是输入原始数据、 程序和控制命令的部件,‘如键盘、鼠标、扫描仪、摄像机等。输出设备是输出计算机数据信息处理的结果和计算机工作状态信息的部件,如屏幕显示器、打印机、1,ED数码管显示器绘图仪等。但输入输出设备一般不能与CPU直接相连,而是通过某种电路完成寻址、数据缓冲、输入输出控制、功率驱动、A
[单片机]
80c51汇编语言格式,MCS-51汇编语言程序格式
5) MCS-51汇编语言程序的一般格式 *与8086不同,没有代码段、数据段等区分,统一编址。 *程序由指令行或注释行组成,指令行每行只能写一条指令。 *指令前可用“标号:”表示指令地址,以便在指令中引用;标号是符号名,以字母开头。 *注释行应以“;”号开头;指令后也可用“;”号分隔,附加注释。 *程序由伪指令ORG XXXXH 定位,ORG中的16位地址就是将来写入程序存储器的绝对地址。程序中的ORG应按地址从小到大排列。由ORG定位的程序段可以不连续,汇编程序将会在段间的空地址上填00H,即NOP。因此,每个ORG段的最后一条指令一般应是转移指令。 *数据由伪指令DB(字节)或DW(双字节)说明。数值应以数码0-9开头;尾
[单片机]
抗干扰介质损耗测试仪的工作原理及主要特性
抗干扰介质损耗测试仪是一种先进的测量介质损耗(tgδ)和电容器容量(Cx)的仪器,用于工频高压下,测量各种绝缘材料、绝缘套管、电力电缆、电容器、互感器、变压器等高压设备的介质损耗,(tgδ)和电容器容量(Cx)它淘汰了QS高压电桥。具有操作简单、中文显示、打印、使用方便、无需换算、自带高压、抗干扰能力强、测试时间(在国内同类产品中速度醉快)体积小、重量轻等特点。 抗干扰介质损耗测试仪的工作原理: 仪器测量线路包括一路标准回路和一路测试回路。 标准回路由内置高稳定度标准电容器与标准电阻网络组成,由计算机实时采集标准回路电流与测试回路的电流幅值及其相位差,并由之算出被测试品的电容容值(Cx)和其介质损耗(tgδ)。 MS-1
[测试测量]
<font color='red'>抗干扰</font>介质损耗测试仪的工作原理及主要特性
单片机系统电路设计解析
  以下介绍单片机最小系统 电路设计 ,单片机最小系统主要由电源、复位、振荡电路以及扩展部分组成。对于一个完整的 电子设计 来讲,首要问题就是为整个系统提供电源供电模块,电源模块的稳定可靠是系统平稳运行的前提和基础。   1、电源   在使用STC89C52RC单片机的时候,工作电压:5.5V-3.4V(5V单片机),这个地方就说明我们这个单片机正常的工作电压是个范围值,只要电源VCC在5.5V到3.4V之间都可以正常工作,电压超过5.5V是绝对不允许的,会烧坏单片机,电压如果低于3.4V,单片机不会损坏,但是也不能正常工作。   2、振荡电路   单片机系统里都有晶振,在单片机系统里晶振作用非常大,全程叫晶体振荡器,他结合单片机
[单片机]
<font color='red'>单片机系统</font>电路设计解析
改造成品单片机系统的方法
通过一个监控系统的研制,阐述了对一个不熟悉的微机系统进行改造时应遵循的原则及基本方法,介绍了双端口存贮器IDT7132和看门狗WDT的用法。 关键词:监控系统,单片机,双端口存贮器,WDT       制作微机监控系统时,若受监控对象本身也是一个微机系统,且又没有电路图、程序等资料时,如何采集对象的内部数据(如CPU状态等),如何修改对象的程序方不至令原系统运行不稳定和崩溃,如何充分利用监控对象的资源,是一个带有普遍性的问题。   笔者研制的“数字实验监控系统”,其主要功能是采集30台学生实验机状态和过程信息,送往中心主机显示。监控对象是一台型号为DLES的数字电路实验机,这是某公司的产品,除简单的用法说明书外别无其它
[工业控制]
改造成品<font color='red'>单片机系统</font>的方法
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
  • ARM裸机篇--按键中断
    先看看GPOI的输入实验:按键电路图:GPF1管教的功能:EINT1要使用GPF1作为EINT1的功能时,只要将GPFCON的3:2位配置成10就可以了!GPF1先配 ...
  • 网上下的--ARM入门笔记
    简单的介绍打今天起菜鸟的ARM笔记算是开张了,也算给我的这些笔记找个存的地方。为什么要发布出来?也许是大家感兴趣的,其实这些笔记之所 ...
  • 学习ARM开发(23)
    三个任务准备与运行结果下来看看创建任务和任运的栈空间怎么样的,以及运行输出。Made in china by UCSDN(caijunsheng)Lichee 1 0 0 ...
  • 学习ARM开发(22)
    关闭中断与打开中断中断是一种高效的对话机制,但有时并不想程序运行的过程中中断运行,比如正在打印东西,但程序突然中断了,又让另外一个 ...
  • 学习ARM开发(21)
    先要声明任务指针,因为后面需要使用。 任务指针 volatile TASK_TCB* volatile g_pCurrentTask = NULL;volatile TASK_TCB* vol ...
  • 学习ARM开发(20)
  • 学习ARM开发(19)
  • 学习ARM开发(14)
  • 学习ARM开发(15)
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved