在上电或复位过程中,控制CPU的复位状态:这段时间内让CPU保持复位状态,而不是一上电或刚复位完毕就工作,防止CPU发出错误的指令、执行错误操作,也可以提高电磁兼容性能。
无论用户使用哪种类型的单片机,总要涉及到单片机复位电路的设计。而单片机复位电路设计的好坏,直接影响到整个系统工作的可靠性。许多用户在设计完单片机系统,并在实验室调试成功后,在现场却出现了“死机”、“程序走飞”等现象,这主要是单片机的复位电路设计不可靠引起的。
基本的复位方式
单片机在启动时都需要复位,以使CPU及系统各部件处于确定的初始状态,并从初态开始工作。89系列单片机的复位信号是从RST引脚输入到芯片内的施密特触发器中的。当系统处于正常工作状态时,且振荡器稳定后,如果RST引脚上有一个高电平并维持2个机器周期(24个振荡周期)以上,则CPU就可以响应并将系统复位。单片机系统的复位方式有:手动按钮复位和上电复位。
1、手动按钮复位
手动按钮复位需要人为在复位输入端RST上加入高电平(图1)。一般采用的办法是在RST端和正电源Vcc之间接一个按钮。当人为按下按钮时,则Vcc的+5V电平就会直接加到RST端。手动按钮复位的电路如所示。由于人的动作再快也会使按钮保持接通达数十毫秒,所以,完全能够满足复位的时间要求。
图1
2、上电复位
AT89C51的上电复位电路如图2所示,只要在RST复位输入引脚上接一电容至Vcc端,下接一个电阻到地即可。对于CMOS型单片机,由于在RST端内部有一个下拉电阻,故可将外部电阻去掉,而将外接电容减至1?F。上电复位的工作过程是在加电时,复位电路通过电 容加给RST端一个短暂的高电平信号,此高电平信号随着Vcc对电容的充电过程而逐渐回落,即RST端的高电平持续时间取决于电容的充电时间。为了保证系统能够可靠地复位,RST端的高电平信号必须维持足够长的时间。上电时,Vcc的上升时间约为10ms,而振荡器的起振时间取决于振荡频率,如晶振频率为10MHz,起振时间为1ms;晶振频率为1MHz,起振时间则为10ms。在图2的复位电路中,当Vcc掉电时,必然会使RST端电压迅速下降到0V以下,但是,由于内部电路的限制作用,这个负电压将不会对器件产生损害。另外,在复位期间,端口引脚处于随机状态,复位后,系统将端口置为全“l”态。如果系统在上电时得不到有效的复位,则程序计数器PC将得不到一个合适的初值,因此,CPU可能会从一个未被定义的位置开始执行程序。
图2
3、积分型上电复位
常用的上电或开关复位电路如图3所示。上电后,由于电容C3的充电和反相门的作用,使RST持续一段时间的高电平。当单片机已在运行当中时,按下复位键K后松开,也能使RST为一段时间的高电平,从而实现上电或开关复位的操作。
根据实际操作的经验,下面给出这种复位电路的电容、电阻参考值。
图3中:C:=1uF,Rl=lk,R2=10k
图3 积分型上电复位电路
关键字:单片机 复位电路 复位方式
引用地址:
CPU与单片机的复位电路的作用及基本复位方式
推荐阅读最新更新时间:2024-03-16 13:18
单片机中LED数码管的介绍
LED 小灯是一种简单的 LED,只能通过亮和灭来表达简单的信息。而这节课我们要来学习一种能表达更复杂信息的器件——LED 数码管。 先给大家提供一张原理图看一下,如图 5-3 所示。 图 5-3 数码管原理图 这是比较常见的数码管的原理图,我们板子上一共有 6 个数码管。前边有了 LED 小灯的学习,数码管学习就会轻松的多了。从图 5-3 可以看出来,数码管共有 a、b、c、d、e、f、g、dp 这么 8 个段,而实际上,这 8 个段每一段都是一个 LED 小灯,所以一个数码管就是由 8个 LED 小灯组成的。我们看一下数码管内部结构的示意图,如图 5-4。 图 5-4 数码管结构示意图 数码管分为共阳和共阴两种,共
[单片机]
周立功写给学单片机的年轻人
作为过来人思前想后,我感到完全有责任将发自心底的感受传递给年轻一代,“一个企业家心灵深处渴望优秀人才的卓越追求和深层次的叹息、痛苦和感受”。您们千万不要等到毕业求职时才觉得自己能力太差,世界上从来就没有后悔药。当然,如果您现在看了我写的这篇文章可能还不算晚,因为您还有机会在以后的岁月里奋起直追——“亡羊补牢,尤未为晚”。对于现在刚进入大学的学生,您应该更加珍惜这美好的求学机会,因为眨眼之间几年就过去了,您很快就会感到来自全社会生存竞争的压力,您面临的对手再也不仅仅是您身边的同学,今天您在班上的成绩的确是前几名,但一走到社会上去才感到是多么地脆弱而又多么地不堪一击。 在面试大多数本科生时,我仅仅是询问了一些有关MCS-51 系
[单片机]
单片机串行通信基础:同步通信和异步通信
在计算机系统中,CPU和外部通信有两种通信方式:并行通信和串行通信。并行通信,即数据的各位同时传送;串行通信,即数据一位一位顺序传送。 串行通信的分类 按照串行数据的时钟控制方式,串行通信可分为同步通信和异步通信两类。 1. 异步通信(Asynchronous Communication) 在异步通信中,数据通常是以字符为单位组成字符帧传送的。字符帧由发送端一帧一帧地发送,每一帧数据均是低位在前,高位在后,通过传输线被接收端一帧一帧地接收。发送端和接收端可以由各自独立的时钟来控制数据的发送和接收,这两个时钟彼此独立,互不同步。 在异步通信中,接收端是依靠字符帧格式来判断发送端是何时开始发送,何时结束发送的。字符帧格式是异
[单片机]
单片机+LCD1602显示℃ 这种自定义符号
#include all.h u8 xdata LCD1602_Write_Buffer1 ; u8 xdata LCD1602_Write_Buffer2 ; u8 code LCD1602_5x8 ={0x08,0x00,0x07,0x08,0x08,0x08,0x08,0x07}; u8 xdata LCD1602_Write_Cursor_Add; void LCD1602_Delay(u8 len) { u8 idata i; while(len--) { i=15; while(i--); } } void LCD1602_Write_Add(u8 Ad
[单片机]
51单片机KEIL如何建立多个C文件及注意事项
1如何建立多个C文件 首先,我们需要一个新文档,这个文档的建立有两种方法(以delay1s函数为例)。第一种,在工程目录下建立一个delay1s.txt然后将其改名为delay1s.h。因为都是同编码的所以不会出现乱 码,然后在工程中将其打开。第二种方法是直接在工程中新建一个文档,然后保存的时候将名字保存为delay1s.h即可。如果是需要添加很多文件的话建议使用第一种方法,这是个人建议。其 次,我们需要编写delay1s.h这个文件的内容,其内容如下: #ifndef _DELAY1S_H_ #define _DELAY1S_H_ void delay1s();//延时函数 #endif 这个是头文件的定义,作用是声明了de
[单片机]
4-基于51单片机的多量程数字电压表
具体实现功能 仿真可以实现四个量程的切换(2V、20V、200V、500V),并模拟实现直流电压的测量与显示。 单片机介绍 51单片是一种低功耗、高性能CMOS8位微控制器,具有 8K 在系统可编程Flash 存储器。在单芯片上,拥有灵巧的8 位CPU 和在系统可编程Flash,使得STC89C51为众多嵌入式控制应用系统提供高灵活、超有效的解决方案。具有以下标准功能:8k字节Flash,512字节RAM,32 位I/O 口线,看门狗定时器,内置4KB EEPROM,MAX810复位电路,三个16 位 定时器/计数器,一个6向量2级中断结构,全双工串行口。另外 STC89X51 可降至0Hz 静态逻辑操作,支持2种软件可选择节
[单片机]
TMS320VC5402DSP与51单片机的接口设计技术
TMS320VC5402(VC5402)是德州仪器公司推出的具有较高性价比的定点数字信号处理器。VC5402增强外设由软件等待状态发生器、锁相环时钟发生器、6通道直接存储器访问(DMA)控制器、增强型8位并行主机接口(HPI)等组成。两个可编程的多通道缓冲串口(McBSP)能够全双工、快速地与其他同步串口进行数据交换,硬件连接简单,串口的工作模式和传送数据的格式可通过编程实现。DSP和单片机之间的通信一般利用双口RAM,通过串口或DSP的HPI接口实现。 利用双口RAM实现 CY7C026是CYPRESS公司生产的16k×16B高速双口静态RAM,存取速度小于25ns。他具有真正的双端口,可以同时进行数据存取,两个
[单片机]
RTOS实现双核MCU消息通信
手机、电脑多核的CPU你可能经常看见,但多核的单片机相对来说就不那么常见了。随着需求的增加、技术的进步,单片机已不再局限于单核了,因此,近几年陆续出现了双核的单片机了。 你可能会好奇,双核单片机之间怎么通信?其实,通信的方式和方法有很多种。本文就给大家描述一下:使用FreeRTOS消息缓冲区,实现简单的非对称多处理(AMP)核心到核心通信,结合STM32H7(M4和M7) 双核处理器为例。 分享正文之前推荐一个嵌入式招聘信息的平台: 概述 实现STM32H7双核之间通信是FreeRTOS官方提供的一个方案,是基于FreeRTOS消息缓冲区,该消息缓冲区是无锁循环缓冲区,可以将大小不同的数据包从单个发送方传递到单个接收方。
[单片机]