基于S3C2440A T-DMB的手机电视软硬件设计

发布者:cwk2003最新更新时间:2013-04-06 来源: dzsc关键字:T-DMB  手机电视  音视频同步  S3C2440A 手机看文章 扫描二维码
随时随地手机看文章

  引言

  目前,世界上已经提出了多个地面数字电视标准:如欧洲的DVB-T、美国的ATSC、日本的ISDB-T,并且都达到实用阶段,许多国家和地区都在选择自己的数字电视地面广播(DTTB:Digital Television Terrestrial Broadcasting)系统。而用于手持移动终端的标准有:T-DMB(韩国)、DVB-H(欧洲)、MediaFLO(美国)、StiMi(中国待定)其中,已商用的是韩国的T-DMB。在我国,北京广播电台在2006年9月初正式开通了名为DAB的手机电视系统,通过电视塔覆盖了北京六环以内,提供12套数字广播节目,同时对2套电视节目进行测试播出。因此,如何快速设计一款可以接收手机电视信号的手持终端设备,以便夺取市场先机就是本文要讨论的内容。

  硬件设计

  硬件设计概述

  硬件配置的选择要综合考虑,如CPU的处理功能关系到最终的解码显示效果。当然,选择一些高档通用处理器,或者是专用的媒体处理器都能够达到较好的效果,但却增加了硬件的成本。可以在最终显示效果和硬件的选择上采取折中方案。目前,能接收T-DMB和DVB-H标准的芯片还不是很多,可以选择市场上的一些主流芯片。本文讨论的这款产品的硬件配置为:S3C2440A(400MHz),64MB的SDRAM,apollo fs1110, kino2efs1026。基本可以满足手机电视对硬件的需求。通过天线接收到的射频信号送给射频前端的RF调谐芯片APOLLO FS1110,主要作用是把射频信号解调为IF(Intermediate Frequency)信号。这款芯片是目前市场上的主流产品,可以接收多个标准的信号,而且体积小(5.0mmx5.0mmx0.9mm),功耗低(80mW),拥有三个低噪声前端放大器,涵盖 L-Band、BandⅡ和BandⅢ三个频段。apollo fs1110把IF信号送给kino2 efs1026,完成信源码解码输出MPEG2-TS数据。kino2是一款高度优化的基带处理器,体积小(10mm×10mm×1.3mm),功耗低(100mW),可以提供各种DMB码率,最高可以达到1.8Mbps,片上含有R-S解码器,可以实现较佳的移动信道性能。kino2把信源码TS码流送给CPU,由CPU完成TS流的解复用、解码和显示。硬件设计框图如图1所示。

  

  图1 硬件设计框图

  硬件各功能模块描述

  手机电视终端最终要做到支持多标准、多频段,这也是市场的需求。由于现在开展手机电视业务的三地所采用的频段不太一样,如北京和广东采用了VHF Band 3,而上海采用了L- Band,因此,同一手机电视终端如果要在国内不同地区接收手机服务,需要支持多频段。本文讨论的T-DMB采用的工作频段是VHF 3波段和L波段,因此,要使用FS1110的BandⅢ和L-Band;而BandⅡ主要用于FM广播。FS1110的3个高频输入都可以使用,频段选择可以由FS1026通过IIC接口来控制,同时,FS1110内部寄存器的初始化也是通过此接口来完成的。

  下游的FS1026基带处理器模块接收RF调谐器送过来的IF信号,最终完成信源解码。输出的MPEG2-TS数据支持并行和串行两种格式。串行数据可以通过SPI接口和CPU直接连接。基带模块还可以通过SCP(Serial Control Port)接口和CPU进行控制信息的交换,SCP接口和IIC接口是完全兼容的。还可以用串口(UART)和CPU进行通信。由于有的商业DMB节目经过服务商加扰(经过加密),智能卡模块可完成解扰功能。[page]

  CPU的功能是通过SPI接口接收TS数据,完成音频和视频的解码后显示。数据可以通过DMA进行缓存,然后就可以从DMA中读取数据进行解复用。DMA方式为一种高速的数据传输操作,允许在外部设备和存储器之间直接读写数据,既不通过CPU,也不需要CPU干预。整个数据传输操作在DMA控制器的控制下进行。CPU除了在数据传输开始和结束时做一点处理外,在传输过程中,CPU可以进行其它工作。这样,在大部分时间里,CPU和输入/输出都处于并行操作状态。因此,可以大大提高整个系统的效率。在WinCE平台下,对DMA的操作相当方便,驱动开发难度不大,读取数据就像操作普通文件一样。只有一点区别,就是要防止DMA溢出。因为普通文件的读取完全可控,而这里处理的是一种“实时”流,有可能发生溢出。溢出包括上溢(数据读取过慢)和下溢(读取过快)。和MPEG的解码器接收端防止数据溢出的原理是一样的,主要是由于图像编码的格式不一样,发送的解码器前端的数据速率并不是恒定的。MPEG采用流速反馈控制来控制数据溢出,使得到达音视频解码器的数据速率趋于恒定。对DMA的控制就简单些,用专用的一个线程读取数据,解复用线程依据数据的多少,可以丢弃某些帧或者放慢解码速度。不过一般还是丢帧的情况多。

  硬件设计注意事项

  设计硬件电路时的主要问题就是高频和电磁兼容,一般的方法是加屏蔽罩,可以把APOLLO FS1110加屏蔽罩,以减少模块的空间干扰。当然也可以把APOLLO FS1110、KINO2EFS1026做成外置式模块。还可以通过优化原理图的设计来减少高频的影响。因为原理图的好坏直接影响布局、布线的难度,以及以后板子性能的好坏。为了布局布线时能清晰地进行分区设计,以减少各个功能模块之间的影响,设计原理图时应把数字、模拟和RF电路分开。但是,由于手持设备体积较小,屏蔽罩一般是必不可少的。

  软件设计

  T-DMB标准概述

  T-DMB采用H.264 视频压缩标准,音频采用专利费较低的MPEG-4 比特分片算术编码BSAC(Bit-Sliced Arithmetic Coding)或者AAC+(欧洲T-DMB采用),图像格式为CIF(Common Intermediate Format)(352×288),把这些音频和视频码流加上一些用户数据,经过MPEG-4 SL(Sync Layer)同步层打包和MPEG-2 TS(Transport Stream)复用后,交给调制器调制为适宜在信道上传播的信号发射出去。各种标准的接收端除信道解码有较大差别,信源的解码很相近。T-DMB系统发送端编码器结构如图2所示。

  

  图2 T-DMB发送端编码框图

  其中的MPEG-4 OD/BINFS发生器产生视听对象、场景时空关系信息和视听对象的描述符信息。IOD发生器产生视听对象的初始信息:场景描述和对象描述信息。分段发生器主要收集SLP和IOD数据信息,用于产生和节目解复用相关的参考信息PSI(Program Specific Information)。在T-DMB的数据流中,可以通过解析PMT中的描述字段得到IOD_descriptor ,由IOD_descriptor可以得到场景、对象描述信息。由对象描述可以得到ES_ descriptor等信息。SL同步打包器主要负责视听对象和辅助数据的同步。SL包经PES打包之后,再把PES包打为TS包发送给调制器。

  软件的功能描述

  软件的主要任务是TS流的解复用、H.264和AAC+的解码,采用微软的Direct Show技术开发,可以降低开发难度和开发周期。Direct Show技术是微软提供的Windows平台多媒体开发包,以COM为基础。Direct Show使用Filter Graph的模型来管理整个数据流的处理过程。参与处理的各个功能模块叫Filter,按功能分3类:Source、Transform、Rendering Filter 。Source Filter主要负责获取数据和前期的处理;Transform Filter负责数据格式的转换和传输,主要是负责解码;Render Filter负责显示。各个Filter和应用程序的交互靠事件通知机制来完成:Filter状态改变时发出一个事件,由Filter Graph Manager处理或发给应用程序。整个软件可以分为5大功能模块,如图3所示。TS解复用器模块属于Source Filter,作用是从DMA缓冲中获取数据,然后从TS流中解析PAT(Program Association Table)和PMT(Program Map Table),得到相关节目的音频和视频数据TS包的PID(Packet Identifier)之后,就可以组合PES(Packetized Elementary Stream)包,同时还可以得到和音视频同步相关的参数:PCR(Program Clock Reference)、CTS(Presentation Time Stamp)、DTS(Decoding Time Stamp),最后把PES包去包头后的ES(Elementary Stream)数据发给下游的解码Filter。H.264和AAC+解码模块属于Transform Filter,主要功能是把从上游获取的音频和视频数据进行解码,把解码得到的PU(Presentation Unit)重新排序(只有用到双向预测时需排序),送给下游的生成器。视频生成器和音频生成器模块属于Rendering Filter,主要完成显示功能。如果数据格式需要转换,可以在解码器和生成器之间加一个具有转化功能的Transform Filter。[page]

  

  图3 软件模块设计框图

  音频和视频的同步

  软件设计中的关键技术是解决音视频同步的问题。音视频同步主要在 TS解复用器中解决。要想做到音频和视频的同步,需要用到这几个参数:PCR、DTS、PTS。可以在TS包的调整域中得到PCR,从PES包中得到PTS。PES包中的数据是SL包,可以从SL包头中得到DTS。DTS是解码时间,PTS是显示时间。PCR是对编码器90K时钟的计数,它的作用是在解码器切换节目时,提供对解码器PCR计数器的初始值。PTS、DTS最大可能和PCR达到相同的时间起点,即对解码器提供一个公共的时钟参考,以便准确地进行音视频的同步。PCR捕捉到和DTS数值相同的时刻,就可以进行音视频解码。因为视频编码的时候用到了双向预测,一个图像单元被解出后并非马上显示,可能在存储器中留一段时间,作为其余图像单元的解码参考,在被参考完毕后才显示。由于声音没有用到双向预测,它的解码次序就是它的显示次序,故对它MPEG只提出PTS的概念,PTS就是音频的DTS值。即:

  DTS=PTS (1)

  如果得不到PTS,那么按下式计算:

  PTS=PTS_pre +Xms (2)

  其中,PTS_pre表示前面一个AU的PTS,X是ACC+一帧的时间间隔,以ms为单位。

  一般视频对象分为I-VOP、B-VOP、P-VOP三种编码类型。假设在解码器端的VO(Video Object)输入次序为:

  1 2 3 4 5 6 7 8 9 10………

  I B B P B B P B B P B B P B B I B B P........

  由于视频对象编码时用到双向预测,解码器的实际解码次序为:

  I P B B P B B P B B P B B I B B P B B ........

  显示次序同解码器的输入次序。假设知道I帧的PTS和DTS。那么得到关于P帧:

  PTS_P4=PTS_I +33.67ms * 3 (3)

  DTS_P4=DTS_I +33.67ms (4)

  B1帧:PTS_Bn=PTS_I +33.67ms * 2 (5)

  DTS_Bn=DTS_I +33.67ms (6)

  B2帧可以参考上面的两个式子。其中,33.67ms为视频帧时间间隔。

  软件开发注意事项

  关于H.264的解码效率问题。软件解码部分采用开源工程ffmpeg中的H.264解码器,它效率高,方便移植,其中,关键运算,如IDCT、运动补偿等还在几种不同平台上用汇编进行实现。把H.264解码器移植到ARM平台,对于IDCT和运动补偿汇编代码,只需仿照其它平台的代码就可实现,其开发难度并不大。音频解码部分可以参考FAAC和FAAD开源工程。

  结语

  本文讨论的是能够接收符合T-DMB规范(各种标准的接收终端的差别很小)手机电视信号的嵌入式手持设备的软硬件设计概述,这种设备使用户可以不经过移动通信网络直接获得数字电视信号,能够满足人们随时随地对信息的需求。在实际的开发过程中的主要硬件问题是电磁兼容,软件是音视频的同步和H.264的解码效率问题。软件开发的难点集中在MPEG-2的解复用和Direct Show应用框架的设计

参考文献:

[1]. COM datasheet http://www.dzsc.com/datasheet/COM_1118194.html.
[2]. PCR datasheet http://www.dzsc.com/datasheet/PCR_1201341.html.

关键字:T-DMB  手机电视  音视频同步  S3C2440A 引用地址:基于S3C2440A T-DMB的手机电视软硬件设计

上一篇:高手进阶2.6内核的Linux嵌入式系统应用
下一篇:一种改进的嵌入式网络视频监控系统

推荐阅读最新更新时间:2024-03-16 13:21

用于手机电视终端的QAM解调器设计
   l 引言   在实际通信信道上传输数字信号时,由于信道传输特性不理想及加性噪声的影响,接收端所收到的数字信号不可避免地会发生错误。为了在一定的信噪比范围内获得较好的误码率指标,首先要合理设计基带信号,选择调制解调方式,采用时域、频域均衡等技术使误码率尽可能降低。在通信系统中常用的调制方法一般为QPSK和M阶QAM调制(M=4,8,16,32,64,256…)。对QPSK调制来说,调制点的幅度是相同的,只是相位不同,解调时可不考虑信噪比和衰落幅度的影响。对QAM调制来说,调制点的幅度和相位可各不相同,这时要求准确了解信噪比和衰落情况,因此要与信道估计结合起来考虑。在DVB-S,DVB-T,DVB-H,802.16等OFDM系统
[网络通信]
手机电视和智能家居 三星的终极目标是将一切都无线化
科技为家居注入了新鲜的血液,比如智能语音助手,再比如今天要说的无线家居。三星之前就一直在研发无线技术,使手机、电视以及家居无线化,将无线化普及。近日,世界知识产权组织(WIPO)发布了一份由LetsGoDigital最先发布报告。报告显示,三星或许正在研究一种无线化电视设计,也就是说,不需要电线供电,实现真正的无线化。 这项专利于2018年初向世界知识产权组织提交申请,但直到最近才被披露出来。我们从报告中可以清楚地看到,三星打算采用一种特别的无线电源解决方案,也就是在电视中增加一个单独的无线电源接收器。关键是现在的电视变得越来越薄,无线电源接收器在在体积上会是个难点,需要迎合电视设计发展的趋势。 由于无线电源接收器是单独的
[家用电子]
<font color='red'>手机</font>,<font color='red'>电视</font>和智能家居 三星的终极目标是将一切都无线化
带CMMB电视功能的TD-SCDMA手机量产在即
“CMMB/TD手机的量产,将是CMMB发展的又一个重要里程碑。” 芯片供应商创毅视讯负责人表示,这将引起广电手机电视标准CMMB持续推进的“多米诺骨牌”效应。   从创毅视讯和宇龙酷派内部获悉,创毅视讯与TD-SCDMA手机制造商宇龙酷派即将对外宣布,由双方合作研发的CMMB/TD手机实现量产。   随着奥运会的日益临近,工业和信息化部已明确要求奥运前TD终端必须具备CMMB手机电视功能,而中国移动正在进行4万部具备CMMB手机电视功能TD手机的招标。   创毅视讯相关人士表示,作为目前国内首批可以量产的CMMB/TD手机,双方合作发布的该款手机有望在此次招标中有较大斩获。   宇龙酷派市场部负责人表示,此次双
[家用电子]
IHS:手机OLED面板成本逐步降低 电视OLED难降
研调机构IHS指出,手机用有机发光二极体(OLED)面板成本逐步降低,接近液晶显示面板(LCD),但电视用OLED面板成本下降,却仍难以贴近LCD电视面板。 IHS在中国显示器与材料研讨会邀请文件中指出,不论主流还是入门级的高端智能手机,采用OLED面板的比例正在增加,OLED面板在智能手机显示面板市场的渗透率迅速攀升。   不过,IHS认为,电视面板市场与手机面板市场不同,大尺寸OLED电视面板生产良率仍然相对较低,而且需要大量投资。因此,55吋超高解析度OLED电视面板的制造成本估计比LCD成本高2.5倍。LCD面板在电视应用中仍然具有更高的成本竞争力。   IHS说明,OLED是一种自发光显示器,而LCD是被动发光。基本上,
[家用电子]
LG G7 ThinQ加拿大开卖 买手机就送电视
   此前我们报道过,LG G7 ThinQ已经在欧洲上市开卖,现在,这款手机又正式登陆北美市场。   加拿大方面宣布,从5月18日将开启LG G7 ThinQ的预售工作,持续到5月31日。   为了刺激消费者购买,加拿大方面宣布随同运营商推出了一系列促销活动。在活动期间,那些预先向加拿大的运营商和零售商订购LG G7 ThinQ的消费者将免费获得43“LG 4K UHD智能电视。   不过,需要注意的是,加拿大仅有4+64GB的G7可选,且价格尚未公布。   LG G7 ThinQ系列依然采用双面玻璃机身设计,后置指纹模块,支持IP68级防尘防水。采用6.1英寸19.5:9 QHD+级IPS LCD FullVision全面
[手机便携]
手机电视前景广阔但仍面临多重考验
      由于手机终端的便携性,手机电视业务具有比普通电视更广泛的影响力,也引起了国际上的广泛关注,各国电信和广播网络运营商都力图使其成为新的业务增长点。对移动运营商来说,可以最大限度地利用网络能力,提供更加丰富的业务。而对广播公司来说,手机电视是一种电视传播的新渠道,可以充分利用内容资源,扩大用户范围。 手机电视市场前景广阔       根据机构预测,到2010年全球支持手机电视的终端将达到6350万~3亿部,用户将达到1.25~2.7亿。乐观预计2009年手机电视运营收入可达到66亿美元。在国内,我国手机用户到2009年3月达到6.7亿,预计在今后的几年里,手机用户仍将以平稳的速度增长。而电视经过多年的发展,已经成为
[家用电子]
广电系再拒手机电视国标 坚称遴选不公
  从2006年12月开始的手机电视国标遴选4月3日终于揭晓,由30位专家组成的评审组做出了一个出人意料的决定:北京新岸线公司研发的T-MMB确定为手机电视/移动多媒体国家标准的技术方案。      消息一出,此前就以遴选不公平为由拒绝参与的广电总局拒认这个结果。4月4日晚,广电总局科技司发给记者的短信表明了自己的态度:“2008年国办一号文件明确要求,制定数字电视相关国家标准,必须经过规模化试验。一个没有经过严格测试、没有经过一定规模试验验证的技术(T-MMB)仅凭少数人操纵成国家标准方案,是不严肃、不科学的,其结果也与广电行业无关,广电方面也不会采用。”    广电不承认“国标”   4月3日国标委宣布北京新岸线的T-MMB
[家用电子]
基于多核低功耗数字手机电视解决方案
通过多核低功耗技术以及各种不同的IP模块,VF1000不仅仅能够满足数字手机电视对低功耗视频解码芯片的需求,同时也适用于包括GPS、IPTVSTB、PMP甚至腕表电视这样需要超低功耗解码技术的各类应用。“移动电视和可佩戴视频产品市场的需求非常客观,源见科技是第一个进行VGA(DVD)品质移动电视演示的低功耗低成本H.264解码方案供应商。”在VF1000的破冰仪式上,该公司CEO袁开智称。他指出,移动电视视频处理是一种高耗能的应用,它对由电池供电的便携式电子设备提出了挑战。而VF1000就是一个以超低功耗为主要特点的视频处理芯片。“它能够以极低的功耗下提供VGA质量AVC/H.264视频的实时解码能力。这将有助于实现小体积的可
[嵌入式]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
  • ARM裸机篇--按键中断
    先看看GPOI的输入实验:按键电路图:GPF1管教的功能:EINT1要使用GPF1作为EINT1的功能时,只要将GPFCON的3:2位配置成10就可以了!GPF1先配 ...
  • 网上下的--ARM入门笔记
    简单的介绍打今天起菜鸟的ARM笔记算是开张了,也算给我的这些笔记找个存的地方。为什么要发布出来?也许是大家感兴趣的,其实这些笔记之所 ...
  • 学习ARM开发(23)
    三个任务准备与运行结果下来看看创建任务和任运的栈空间怎么样的,以及运行输出。Made in china by UCSDN(caijunsheng)Lichee 1 0 0 ...
  • 学习ARM开发(22)
    关闭中断与打开中断中断是一种高效的对话机制,但有时并不想程序运行的过程中中断运行,比如正在打印东西,但程序突然中断了,又让另外一个 ...
  • 学习ARM开发(21)
    先要声明任务指针,因为后面需要使用。 任务指针 volatile TASK_TCB* volatile g_pCurrentTask = NULL;volatile TASK_TCB* vol ...
  • 学习ARM开发(20)
  • 学习ARM开发(19)
  • 学习ARM开发(14)
  • 学习ARM开发(15)
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved