51单片机的P0口工作原理详细讲解

发布者:柔情细语最新更新时间:2013-07-30 来源: 21ic关键字:51单片机  P0口  工作原理 手机看文章 扫描二维码
随时随地手机看文章

三态门:三态门缓冲器:51单片机P0口输入缓冲器

P0口的输出驱动:两个MOS管组成的推拉式结构

P0口作为IO线输入状态时:①读引脚;②读锁存器;

P0口作为地址/数据复用口

P0口作为IO线输出时,只能输出低电平、高阻态,需要外接上拉电阻,使高阻态变为输出高电平(对比AVR单片机的推挽输出结构)

一、P0端口的结构及工作原理

P0端口8位中的一位结构图见下图:

51单片机的P0口工作原理详细讲解

由上图可见,P0端口由锁存器、输入缓冲器、切换开关、一个与非门、一个与门及场效应管驱动电路构成。再看图的右边,标号为P0.X引脚的图标,也就是说P0.X引脚可以是P0.0到P0.7的任何一位,即在P0口有8个与上图相同的电路组成。

下面,我们先就组成P0口的每个单元部份跟大家介绍一下:

先看输入缓冲器:在P0口中,有两个三态的缓冲器,在学数字电路时,我们已知道,三态门有三个状态,即在其的输出端可以是高电平、低电平,同时还有一种就是高阻状态(或称为禁止状态),大家看上图,上面一个是读锁存器的缓冲器,也就是说,要读取D锁存器输出端Q的数据,那就得使读锁存器的这个缓冲器的三态控制端(上图中标号为‘读锁存器’端)有效。下面一个是读引脚的缓冲器,要读取P0.X引脚上的数据,也要使标号为‘读引脚’的这个三态缓冲器的控制端有效,引脚上的数据才会传输到我们单片机的内部数据总线上。

D锁存器:构成一个锁存器,通常要用一个时序电路,时序的单元电路在学数字电路时我们已知道,一个触发器可以保存一位的二进制数(即具有保持功能),在51单片机的32根I/O口线中都是用一个D触发器来构成锁存器的。大家看上图中的D锁存器,D端是数据输入端,CP是控制端(也就是时序控制信号输入端),Q是输出端,Q非是反向输出端。

对于D触发器来讲,当D输入端有一个输入信号,如果这时控制端CP没有信号(也就是时序脉冲没有到来),这时输入端D的数据是无法传输到输出端Q及反向输出端Q非的。如果时序控制端CP的时序脉冲一旦到了,这时D端输入的数据就会传输到Q及Q非端。数据传送过来后,当CP时序控制端的时序信号消失了,这时,输出端还会保持着上次输入端D的数据(即把上次的数据锁存起来了)。如果下一个时序控制脉冲信号来了,这时D端的数据才再次传送到Q端,从而改变Q端的状态。

多路开关:在51单片机中,当内部的存储器够用(也就是不需要外扩展存储器时,这里讲的存储器包括数据存储器及程序存储器)时,P0口可以作为通用的输入输出端口(即I/O)使用,对于8031(内部没有ROM)的单片机或者编写的程序超过了单片机内部的存储器容量,需要外扩存储器时,P0口就作为‘地址/数据’总线使用。那么这个多路选择开关就是用于选择是做为普通I/O口使用还是作为‘数据/地址’总线使用的选择开关了。大家看上图,当多路开关与下面接通时,P0口是作为普通的I/O口使用的,当多路开关是与上面接通时,P0口是作为‘地址/数据’总线使用的。

输出驱动部份:从上图中我们已看出,P0口的输出是由两个MOS管组成的推拉式结构,也就是说,这两个MOS管一次只能导通一个,当V1导通时,V2就截止,当V2导通时,V1截止。

与门、与非门:这两个单元电路的逻辑原理我们在第四课数字及常用逻辑电路时已做过介绍,不明白的同学请回到第四节去看看。

前面我们已将P0口的各单元部件进行了一个详细的讲解,下面我们就来研究一下P0口做为I/O口及地址/数据总线使用时的具体工作过程。

1、作为I/O端口使用时的工作原理

P0口作为I/O端口使用时,多路开关的控制信号为0(低电平),看上图中的线线部份,多路开关的控制信号同时与与门的一个输入端是相接的,我们知道与门的逻辑特点是“全1出1,有0出0”那么控制信号是0的话,这时与门输出的也是一个0(低电平),与让的输出是0,V1管就截止,在多路控制开关的控制信号是0(低电平)时,多路开关是与锁存器的Q非端相接的(即P0口作为I/O口线使用)。

P0口用作I/O口线,其由数据总线向引脚输出(即输出状态Output)的工作过程:当写锁存器信号CP 有效,数据总线的信号→锁存器的输入端D→锁存器的反向输出Q非端→多路开关→V2管的栅极→V2的漏极到输出端P0.X。前面我们已讲了,当多路开关的控制信号为低电平0时,与门输出为低电平,V1管是截止的,所以作为输出口时,P0是漏极开路输出,类似于OC门,当驱动上接电流负载时,需要外接上拉电阻。

下图就是由内部数据总线向P0口输出数据的流程图(红色箭头)。

 

[page]

P0口用作I/O口线,其由引脚向内部数据总线输入(即输入状态Input)的工作过程:

数据输入时(读P0口)有两种情况

1、读引脚

读芯片引脚上的数据,读引脚数时,读引脚缓冲器打开(即三态缓冲器的控制端要有效),通过内部数据总线输入,请看下图(红色简头)。

2、读锁存器

通过打开读锁存器三态缓冲器读取锁存器输出端Q的状态,请看下图(红色箭头):

在输入状态下,从锁存器和从引脚上读来的信号一般是一致的,但也有例外。例如,当从内部总线输出低电平后,锁存器Q=0,Q非=1,场效应管T2开通,端口线呈低电平状态。此时无论端口线上外接的信号是低电乎还是高电平,从引脚读入单片机的信号都是低电平,因而不能正确地读入端口引脚上的信号。又如,当从内部总线输出高电平后,锁存器Q=1,Q非=0,场效应管T2截止。如外接引脚信号为低电平,从引脚上读入的信号就与从锁存器读入的信号不同。为此,8031单片机在对端口P0一P3的输入操作上,有如下约定:为此,8051单片机在对端口P0一P3的输入操作上,有如下约定:凡属于读-修改-写方式的指令,从锁存器读入信号,其它指令则从端口引脚线上读入信号。

读-修改-写指令的特点是,从端口输入(读)信号,在单片机内加以运算(修改)后,再输出(写)到该端口上。下面是几条读--修改-写指令的例子。

ANL P0,#立即数;P0→立即数P0

ORL P0,A ;P0→AP0

INC P1 ;P1+1→P1

DEC P3 ;P3-1→P3

CPL P2 ;P2→P2

这样安排的原因在于读-修改-写指令需要得到端口原输出的状态,修改后再输出,读锁存器而不是读引脚,可以避免因外部电路的原因而使原端口的状态被读错。

P0端口是8031单片机的总线口,分时出现数据D7一D0、低8位地址A7一AO,以及三态,用来接口存储器、外部电路与外部设备。P0端口是使用最广泛的I/O端口。

[page]

2、作为地址/数据复用口使用时的工作原理

在访问外部存储器时P0口作为地址/数据复用口使用。

这时多路开关‘控制’信号为‘1’,‘与门’解锁,‘与门’输出信号电平由“地址/数据”线信号决定;多路开关与反相器的输出端相连,地址信号经“地址/数据”线→反相器→V2场效应管栅极→V2漏极输出。

例如:控制信号为1,地址信号为“0”时,与门输出低电平,V1管截止;反相器输出高电平,V2管导通,输出引脚的地址信号为低电平。请看下图(兰色字体为电平):

反之,控制信号为“1”、地址信号为“1”,“与门”输出为高电平,V1管导通;反相器输出低电平,V2管截止,输出引脚的地址信号为高电平。请看下图(兰色字体为电平):

可见,在输出“地址/数据”信息时,V1、V2管是交替导通的,负载能力很强,可以直接与外设存储器相连,无须增加总线驱动器。

P0口又作为数据总线使用。在访问外部程序存储器时,P0口输出低8位地址信息后,将变为数据总线,以便读指令码(输入)。

在取指令期间,“控制”信号为“0”,V1管截止,多路开关也跟着转向锁存器反相输出端Q非;CPU自动将0FFH(11111111,即向D锁存器写入一个高电平‘1’)写入P0口锁存器,使V2管截止,在读引脚信号控制下,通过读引脚三态门电路将指令码读到内部总线。请看下图

如果该指令是输出数据,如MOVX @DPTR,A(将累加器的内容通过P0口数据总线传送到外部RAM中),则多路开关“控制”信号为‘1’,“与门”解锁,与输出地址信号的工作流程类似,数据据由“地址/数据”线→反相器→V2场效应管栅极→V2漏极输出。

如果该指令是输入数据(读外部数据存储器或程序存储器),如MOVX A,@DPTR(将外部RAM某一存储单元内容通过P0口数据总线输入到累加器A中),则输入的数据仍通过读引脚三态缓冲器到内部总线,其过程类似于上图中的读取指令码流程图。

通过以上的分析可以看出,当P0作为地址/数据总线使用时,在读指令码或输入数据前,CPU自动向P0口锁存器写入0FFH,破坏了P0口原来的状态。因此,不能再作为通用的I/O端口。大家以后在系统设计时务必注意,即程序中不能再含有以P0口作为操作数(包含源操作数和目的操作数)的指令。

关键字:51单片机  P0口  工作原理 引用地址:51单片机的P0口工作原理详细讲解

上一篇:基于单片机的语音播报万用表设计
下一篇:基于Ethernet 的冗余CAN 总线协议转换器设计

推荐阅读最新更新时间:2024-03-16 13:26

51单片机的at24c02驱动程序
//////////////////////////////////////////////////////// 头文件 ///////////////////////////////////////////////////////////////////////////////////////// /****************************************************************************** * 标题: at24c02 e2prom驱动程序 * * 文件: at24c
[单片机]
基于51单片机的数字测速系统的设计方案
本方案所设计的基于霍尔元件的脉冲发生器要求成本低,构造简单,性能好。在电气控制系统中存在着较为恶劣的电磁环境,因此要求产品本身要具有较强的抗干扰能力。系统主要由AT89S52 单片机处理系统、电机、传感器检测单元、信号处理单元和显示系统等几个部分组成。 1 总体方案设计 对转速的测量实际上是对转子旋转引起的周期脉冲信号的频率进行测量。霍尔元件测速法是利用霍尔开关元件测转速的。 霍尔开关元件内含稳压电路、霍尔电势发生器、放大器、施密特触发器和输出电路。输出电平与TTL 电平兼容,在电机转轴上装一个圆盘,圆盘上装若干对小磁钢,小磁钢越多,分辨率越高,霍尔开关固定在小磁钢附近,当电机转动时,每当一个小磁钢转过霍尔开关,霍尔开关便输出一个
[电源管理]
基于<font color='red'>51单片机</font>的数字测速系统的设计方案
C51单片机蜂鸣器祝你平安音乐
#include reg52.h unsigned char Count; sbit _Speak =P1^5 ; unsigned char code SONG ={ //祝你平安 0x26,0x20,0x20,0x20,0x20,0x20,0x26,0x10,0x20,0x10,0x20,0x80,0x26,0x20,0x30,0x20, 0x30,0x20,0x39,0x10,0x30,0x10,0x30,0x80,0x26,0x20,0x20,0x20,0x20,0x20,0x1c,0x20, 0x20,0x80,0x2b,0x20,0x26,0x20,0x20,0x20,0x2b,0x10,0x26,0x10,0
[单片机]
键盘的工作原理
键盘的基本工作原理就是实时监视按键,将按键信息送入计算机。在键盘的内部设计中有定位按键位置的键位扫描电路、产生被按下键代码的编码电路以及将产生代码送入计算机的接口电路等等,这些电路被统称为键盘控制电路。根据键盘工作原理,可以把计算机键盘分为编码键盘和非编码键盘。键盘控制电路的功能完全依靠硬件来自动完成的,这种键盘称为编码键盘,它能自动将按下键的编码信息送入计算机。另外一种键盘,它的键盘控制电路功能要依靠硬件和软件共同完成,这种键盘称为非编码键盘。这种键盘响应速度不如编码键盘快,但它可通过软件为键盘的某些按键重新定义,为扩充键盘的功能提供了极大的方便,从而得到了广泛应用。 逐行扫描法 由程序对键盘进行逐行扫描,通过检测到的列输
[模拟电子]
键盘的<font color='red'>工作原理</font>
51单片机加HC—SR04超声波测距仪用LCD1602显示
#include reg51.H #include intrins.h #define uchar unsigned char #define uint unsigned int sbit lcden=P1^2; sbit lcdrs=P1^0; sbit lcdrw=P1^1; sbit RX=P2^1; sbit TX=P2^0; uint time=0; unsigned long S=0; bit flag =0; uchar disdat ={ 0,0,0,0,}; void delay(uint z) //延时子程序 { uint x,y; for(x=z;x 0;x--) for(y=110;
[单片机]
基于51单片机嵌入式系统仿真设计
本文介绍一种嵌入式系统仿真方法,通过一种特殊设计的指令集仿真器ISS将软件调试器软件Keil uVision2和硬件语言仿真器软件Modelsim连接起来,实现了软件和硬件的同步仿真。 缩略词解释: BFM:总线功能模块。在HDL硬件语言仿真中,BFM完成抽象描述数据和具体的时序信号之间的转换。 PLI:Verilog编程语言接口,是C语言模块和Verilog语言模块之间交换数据的接口定义。 TCL:字面意思是工具命令语言,是一种解释执行语言,流行EDA软件一般都集成有TCL。使用TCL用户可以编写控制EDA工具的脚本程序,实现工具操作自动化。 ISS:CPU指令集仿真器,可以执行CPU的机器码。 TFTP:简单文件传输协议,
[单片机]
基于<font color='red'>51单片机</font>嵌入式系统仿真设计
51单片机初学实践:用DS1302模块和1.44寸TFT显示屏实现电子钟
这周在上次实现的电子钟(51单片机初学实践:用DS1302模块和LCD1602显示屏实现电子钟)的基础上作了以下2点改进:1、将LCD1602屏幕更换为1.44寸 TFT显示屏 主要考虑是TFT显示屏可以使用不同字体和颜色,更方便定制显示界面 2、将STC89C52RC单片机更换为STC12C5A60S2单片机 首先是空间更大,STC12C5A60S2单片机(60K bytes flash ROM, 1280 bytes data RAM),STC89C52RC单片机(8K bytes flash ROM, 512 bytes data RAM) 其次STC12C5A60S2单片机有单独的SPI接口(P1.5 MOSI 和
[单片机]
<font color='red'>51单片机</font>初学实践:用DS1302模块和1.44寸TFT显示屏实现电子钟
80c51是几位单片机 80c51单片机有几个中断源
  80c51是几位单片机   80C51是一种8位微处理器,也被称为8051,由Intel公司推出。它是最早的商用单片机之一,由于它的简单易用、灵活可靠,被广泛应用于许多嵌入式系统中。在80C51系列中,最常见的型号包括AT89C51和AT89S52等。   80c51单片机寻址范围有多少   80C51单片机的寻址范围取决于其具体的型号和存储器结构。在最常见的AT89C51和AT89S52型号中,其寻址范围如下:   内部RAM寻址范围:0x00-0x7F(128字节)   内部ROM寻址范围:0x0000-0xFFFF(64KB)   特殊功能寄存器(SFR)寻址范围:0x80-0xFF(128字节)   外部扩展RAM
[单片机]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved