基于AT89S52的防撞小车系统设计

发布者:紫菜包饭最新更新时间:2013-10-23 来源: eefocus关键字:AT89S52  防撞小车系统  障碍物检测 手机看文章 扫描二维码
随时随地手机看文章
1 引言

超声波传感器因其测量精度高、 响应快和价格低廉而得到了广泛应用,传统应用方式是1 个发射头对应1 个接收头 ,也有多个发射头对应1 个接收头。但我们在实际应用中发现,如果障碍物的面很大(如墙壁),超声波传感器可以用来准确测距,但若将其应用在小车防撞系统中,由于障碍物呈柱状,而超声波发射头有一定的散射角(左右),因此即使障碍物不在小车正前方,超声波仍能检测到斜前方回波,这就给智能控制车辆行进带来困难和误导,为了解决这一问题,我们提出了一种使用双接收头的方案,并从实用角度给出了一套具体控制策略。

2系统的结构流程设计

我们的整个系统需要完成测距,测速,定位,控制小车运动等功能,系统包括如下六部分: 超声波发射电路, 超声波接受电路,信号处理器,温度测量,小车控制电路等五部分。系统结构框图如图一所示:
  
图1:系统结构框图

通过单片机产生40k 的方波,经过放大后驱动超声波传感器发射头,从而发出超声波,遇到前方物体反射后由接收端捕捉,经过对两个接收头捕捉时间的计算以及加入温度补偿,判断最终前方小车的方向与距离,再通过与前次数据差分计算出其相对前车的速度,最后通过速度、距离以及位置三个数据进行智能控制,控制小车转弯或减速慢行等。

具体的硬件组成为:MCU 采用AT89S52 单片机,P1.0 口输出超声波换能器所需的40K 方波信号,经过反相器7404 后驱动传感器,为了能使超声波发射得更远,我们并接了三个发射头,利用外中断0 口监测超声波接收电路输出的返回信号,回波检测采用红外检测集成芯片CX20106,显示电路采用简单的4 位共阳LED数码管,断码用74LS244,位码用8550 驱动。测温部分使用18B20 测出当前的环境温度用以判断出超声波传播的速度。

3 MCU 算法控制

3.1 距离计算与方位判断

单片机可以计算出发射与接收到超声波之间的时间,根据测温系统的实际测温, 查找出在该对应温度下的声速,计算出反射物距离两接收端的距离。 理论上由以上两个数据上就可以直接数学推导出该物体的空间位置(如图2 和公式一、二所示)。  
  
图2 超声波传感器空间方位

其中d 为R1 与R2 的距离,z1、z2 分别为物体到各个接收端的距离 ,如果直接这样计算就会过于复杂,普通单片机处理的话耗时较多, 于是我们提出了一种基于计算二者距离差来大致判断物体位置的方法。一般来讲小车只关心在车前方的物体,我们设定一个距离参数l代表前方障碍物与小车的水平距离,再设定一个距离参数h,代表前方障碍物与小车的垂直距离。我们可以由下面的关系推导出h, l, d与z2-z1的关系(公式3---公式6)。[page]
  
将公式6想减的两项做除法不难发现第一项始终大于第二项,所以z2-z1是关于l的增函数, 同时随着h的减小,z2-z1同样会变大,也就是说当障碍物体靠近小车时,如果其偏离了小车的中心(即不会撞到)有一个明显的特征为其z2-z1的值会比较大,我们可以取d=5cm h=30cm, 让l在[10cm,30cm]间变化,做出的曲线如图3所示,各个物理量的几何关系见图4 。
  
图3 z2-z1与l的关系
  
图4 各个物理量的几何关系

不难发现,当l距离在[10cm,30cm](h < 30cm)区间时,z2-z1的差将 > 4cm.据此我们设定了一个阈值4cm,当检测到差值大于4cm,不需要做任何刹车控制,直接直行通过,通过这样简单的计算判断,我们可以有效避免由于偏离小车中心的障碍物靠小车过近造成的z1,z2的值过小,从而引来可能的刹车误判。在做这个项目时,我们采用的车模体积不大,因此设计的阈值等不是很大,若应用到实际车模中时可根据情况改变阈值的大小。

3.2速度的计算

速度我们采取简单的近似平均进行估算,我们可以计算出系统测距地间隔约为120ms,通过将当前的测距结果与上次测距结果做差比较,根据公式7可以估算出当前速度的近似值:
  

3.3系统流程(见图5) 。
 
图5系统流程[page]

4部分测试结果

表1是我们对测距电路单独的测试结果:(单位cm) 。

表1 测距结果  

从此表中可以看出我们的测距电路是很精确的。

图6是我们对双接收头方案的测试结果:
  
图6 双接收头方案测试结果

这六幅图中,上三幅均为用右接收头接收信号时间计算出的距离,而下三幅均为用左接收头接受信号时间计算出的距离,从中亦可看出当障碍物偏离中心时,左右接收头测出的距离明显不同,由此可用来定位。

最后当我们完成整个小车系统的调试后,用它测试发现无论是运动的还是静止的障碍物,在小车前方的任何位置,小车都可正确判后做出前进或停止的动作。

5 结论

综上所述,本系统提出来一种基于双超声波接收头,3发射头的车载自动测速测距控制系统,可以有效的起到对开车司机保护预判提醒等作用,当司机开车遇到紧急事故采取了错误的控制措施时,该系统还可以强行纠正,或进行报警提醒司机检查。由于该系统简单,经济适用,工作稳定,具有非常大的市场前景 .
关键字:AT89S52  防撞小车系统  障碍物检测 引用地址:基于AT89S52的防撞小车系统设计

上一篇:计算机防盗系统的一种新型设计方法
下一篇:基于AT89S8252单片机的水文缆道测验系统设计

推荐阅读最新更新时间:2024-03-16 13:29

基于AT89S52的多功能智能小车设计
随着计算机、微电子、信息技术的快速发展,智能化技术的开发速度越来越快,智能度越来越高,应用范围也得到了极大的扩展。智能小车作为移动式机器人中的一个重要分支,具有环境感知、规划决策、自动行驶等功能,是智能化技术中一个典型的例子。设计者可以通过软件编程,让小车在预先设定的模式中实现行进、寻迹、避障等精确控制,无需人工干预,当有特殊需要或在出现故障的情况下还可以对小车进行远程遥控,可以应用于科学勘探等用途,具有广阔的发展前景。 1 系统总体设计框图 本设计中,智能小车是由主控制模块、电机驱动模块、循迹模块、避障模块、遥控模块、声控模块、光控模块、电源模块和其他外围电路组成,其总体硬件结构框图如图1所示。 2 系统硬件设计
[单片机]
基于<font color='red'>AT89S52</font>的多功能智能<font color='red'>小车</font>设计
基于CPLD和AT89S52的自动巡线轮式机器人控制系统
   1引言   轮式移动机器人是机器人研究领域的一项重要内容.它集机械、电子、检测技术与智能控制于一体。在各种移动机构中,轮式移动机构最为常见。轮式移动机构之所以得到广泛的应用。主要是因为容易控制其移动速度和移动方向。因此.有必要研制一套完整的轮式机器人系统。并进行相应的运动规划和控制算法研究。笔者设计和开发了基于51型单片机的自动巡线轮式机器人控制系统。    2控制系统总体设计   机器人控制系统由主控制电路模块、存储器模块、光电检测模块、电机及舵机驱动模块等部分组成,控制系统的框图如图1所示。       3主控制模块设计   3.1CPLD设计   在机器人控制系统中.需要控制多个电动机和行程开关.还要进
[单片机]
基于CPLD和<font color='red'>AT89S52</font>的自动巡线轮式机器人控制<font color='red'>系统</font>
基于AT89S52和DS18B20的温度显示报警系统
  引言   温度是一种最基本的环境参数,人们的生活环境与温度息息相关,温度测量也被人们所异常关注。因此,研究温度的测量方法和装置具有重要意义,温度测控技术也在各个领域应用越来越广泛。采用单片机对温度进行控制,不仅具有控制方便和组态简单的优点,而且可以提高被控温度的技术指标。本文介绍了一款由单片机AT89S52 和新型的智能集成温度 传感器 DS18B20 以及LCD 显示器等部件实现的温度测量及报警系统。同时在设计方面做了功能的扩展,键盘是用来调时和温度查询,功能较强,可以设置上下限报警温度,且测量准确、误差小。单片机可把由DS18B20、DS1302 读来的数据利用软件来进行处理,从而把数据传输到显示模块,实现温度、日历的显
[单片机]
基于<font color='red'>AT89S52</font>和DS18B20的温度显示报警<font color='red'>系统</font>
一种有无线拈的发射装置外场测试仪设计
针对传统的空空导弹发射装置中外场测试仪与飞机座舱无法直接通信的问题,设计了一种具有无线模块的外场测试仪。该测试仪可通过无线方式与座舱通信,提高了测试效率。同时无线模块替代了显示屏等人机接口,减小了测试仪的体积和重量,便于使用和运输。 发射装置外场测试仪(以下简称测试仪)是空空导弹发射装置的专用外场检测设备。在载机挂弹前,测试仪可模拟导弹部分的信号、负载和时序,完成对空空导弹发射装置及飞机有关线路、信号和工作时序的定性检查。 载机挂弹前,使用测试仪检测发射装置是一个飞机座舱与测试仪间的互动过程:座舱要向测试仪下发命令,告知测试仪发射装置的某个状态;测试仪完成该状态的测试后,需上报测试结果或故障信息。传统的测试仪由一体化的工程机箱构
[单片机]
一种有无线拈的发射装置外场测试仪设计
基于AT89S52的MEMS陀螺信号采集与处理系统设计
 MEMS(Micro Electron Mechanical System)陀螺仪是一种可以精确测量物体方位的仪器,不仅成本低,体积小,重量轻,而且可以与微电子加工的电路实现集成,做到机电一体化。MEMS陀螺适用于汽车工业、惯性导航、计算机、机器人、军事等急需大量小型、廉价陀螺的应用领域,是国防、工业发展中必不可少的仪器。 但是,MEMS陀螺仪在实际应用中达不到需要的精度,为了提高陀螺仪系统工作性能和测量精度,对陀螺仪进行数据采集并减小误差是至关重要的。 ADIS16355惯性测量装置将三轴角速度感知与三轴加速度感知相结合,提供六自由度运动感知、嵌入式校准与传感器处理以及传感器-传感器交叉补偿,并大大提高信号稳定性(使用
[工业控制]
基于<font color='red'>AT89S52</font>的MEMS陀螺信号采集与处理<font color='red'>系统</font>设计
基于AT89S52和传感器的智能库区防盗系统的设计
  0.前 言   智能防盗系统已成为库区管理的必要组成部分,数字化、无线化、集成化则是防盗系统的技术发展趋势,为此,现代防盗系统广泛采用红外线作为传感信号。由于红外线是不可见光,因而具有很强的隐蔽性和保密性,且基于红外传感信号的防盗系统结构简单,报警准确、及时,是安全防御的最佳选择。本设计主要对智能库区防盗系统的基本功能进行了设计,可分时段对检测到的信号做出判断并实现相应功能。   1.系统方案   系统要求具备以下功能:   1.防盗系统在18:00—08:00时间段内处于防盗状态,当检测到有人进入则发出声光报警,并记录进入时间;   2.防盗系统在08:00—18:00时间段内处于检测人数状态,每当一个人进入,则计
[单片机]
基于<font color='red'>AT89S52</font>和传感器的智能库区防盗<font color='red'>系统</font>的设计
红外接收(模拟串口接收)
//****************************************************************** //@FileName: UART51.C //@Controller AT89S52 //@Compiler Keil //@Hardware: 一个普通的I/O,一个定时器T0;和TXD //Description: 该程序为接收程序,接收发送的数据,并通过串口输出显示, // 判断是否接收到正确数据,接收程序主要在于时间的控制, // 说白了,就是模拟串口接收数据 // 发送程序通过TXD直接发送数据,将要发出的数据与38KHZ的方波 // 通过两个9012三极管处理,得到
[单片机]
基于AT89S52的车载压实度检测仪设计
1 引言 压实度是指压实土的干密度与标准击实试验获得的最大干密度之比。在公路修筑中,路基、地基层、基层和面层都需要很好的压实,以达到一定的密实度,提高道路的承载能力,并防止沉陷、水分渗透等。而衡量路基压实质量的一个重要指标就是路基的压实度。通常,压实度每提高1%,基础承载能力就要提高10%。若是沥青混凝土路面,压实度每提高1%,承载能力和寿命可提高10~15%。压实工作的重要性显而易见。 目前施工或检测部门一直采用的是传统的人工抽样方法来保证压实质量,这种方法不仅费时费力,而且还将造成路基的破坏。随着交通运输量的迅速增大,公路建设进一步发展,施工部门对压实度的检测提出了更高的要求。传统的压实度测量方法已经不能适应现代的施工要求
[应用]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved